
Choose Wisely: A Comparison of
Secure Two-Party Computation Frameworks

Jan Henrik Ziegeldorf, Jan Metzke, Martin Henze, Klaus Wehrle
Communication and Distributed Systems (COMSYS), RWTH Aachen University, Germany
{ziegeldorf, henze, wehrle}@comsys.rwth-aachen.de, jan.metzke@rwth-aachen.de

Abstract—Secure Two-Party Computation (STC), despite be-
ing a powerful tool for privacy engineers, is rarely used practically
due to two reasons: i) STCs incur significant overheads and ii) de-
veloping efficient STCs requires expert knowledge. Recent works
propose a variety of frameworks that address these problems.
However, the varying assumptions, scenarios, and benchmarks in
these works render results incomparable. It is thus hard, if not
impossible, for an inexperienced developer of STCs to choose the
best framework for her task. In this paper, we present a thorough
quantitative performance analysis of recent STC frameworks.
Our results reveal significant performance differences and we
identify potential for optimizations as well as new research
directions for STC. Complemented by a qualitative discussion of
the frameworks’ usability, our results provide privacy engineers
with a dependable information basis to take the decision for the
right STC framework fitting their application.

I. INTRODUCTION

In recent years, the societal demand for systems which
inherently respect privacy and protect data has significantly
increased [1], especially due to press coverage about global
surveillance programs and data breaches. One important tool
which allows privacy engineers to build such inherently
privacy-preserving and data-protection compliant systems is
Secure Two-Party Computation (STC). STC allows two mu-
tually distrusting parties to compute a shared functionality
without having to reveal their private inputs to the other or any
third party. It has, e.g., been applied for secure face recognition
[2], [3] where a facial picture held by one party is matched
against the private database held by the other party without
either party learning the other’s private input. Other example
applications of STC include secure recommendation systems
[4] or secure genetic testing [5]. Theoretically, any computable
functionality can also be computed securely under STC.

However, STC is still rarely used beyond research. The
reasons for this are twofold: First and foremost, STCs incur
significant processing and communication overheads which
limit what applications are feasible. Second, developing ef-
ficient applications under STC is often cumbersome and re-
quires extensive expert knowledge. All of the above mentioned
examples are tailored solutions that have been extensively
hand-optimized and still provide practical performance only
for problem instances which are significantly smaller than
what non-secure but otherwise equivalent implementations can
handle. Recent research has focused on these two issues by
proposing different frameworks [6]–[10], libraries [11] and
even language compilers [12]–[15] that all promise both an
improved performance and easier development of STCs.

1We provide the source code for our benchmarks and the entire set of
evaluation results on our website: www.comsys.rwth-aachen.de/short/iwpe15/

For a privacy engineer, choosing the right one among
these frameworks is crucial as the scientific work present-
ing the frameworks claim significant performance differences.
However, the used evaluation settings vary greatly, e.g., in
the tested functionality, network setting, security parameters,
or the computational resources. Furthermore, benchmarks are
often chosen in favor of the proposed approach and potential
weaknesses are downplayed. Thus, it is hard if not impossible
for a privacy engineer without substantial experience in STC to
make an objective and informed choice among the frameworks.

In this work, we conduct an extensive performance analysis
of STC frameworks available as of January 2015 in order to
address this problem1. The following are our key contributions:

Performance Evaluation: The main contribution of this
paper is a performance comparison study incorporating five
different STC frameworks, namely Fairplay [16], CBMC-
GC [14], mightbeevil [7], TASTY [8], and SeComLib [11].
By implementing different benchmarks and varying network
parameters as well as computational resources, we achieve a
fair and objective comparison. Our results reveal large differ-
ences in the performance of the STC frameworks, emphasizing
the importance for a privacy engineer to choose the right
framework for a given task and deployment scenario.

Qualitative Analysis: Based on our experiences gained from
implementing the various benchmarks, we discuss the practical
usability of the considered STC frameworks.

New Research Directions: Our qualitative and quantitative
analysis indicate lacking support in STC approaches and
frameworks for real-world problem sizes, mobile applications,
and interactive scenarios. Based on these findings, we point
out possible future research directions for STC.

The remainder of this work is structured as follows: In
Section II, we concisely present the basic STC paradigms
which are the basis of all considered STC frameworks. Section
III presents our evaluation methodology and our choice of
frameworks. We present our performance analysis in Section
IV. Section V discusses our results and identifies optimiza-
tion potential as well as new research directions. Section VI
presents the related work and Section VII concludes this paper.

II. SECURE TWO-PARTY COMPUTATION

In this section, we present the basic theoretical foundations
of STC which are important to understand our choice of
benchmarks, the measurement methodology, the discussion of
qualitative results, and new research directions. STC allows
two mutually distrusting parties with private inputs x respec-
tively y to compute a known functionality F(x, y) without
anyone learning the private inputs. STC achieves this by
cryptographically transforming the private inputs x and y such

Client Server
|x|, |y|F(·)

G
ar

bl
in

g
F̃(·)

ỹ

y

E
va

l

OT

x

Results

t

F̃(x̃, ỹ)

OT

(a) STC based on GC

Client Server

Results

Pr
ot

oc
ol

Pr
ec

om
p

Pr
ec

om
p

K
ey

ge
n

F(·)

Pubkey

JxK yx

OP

OP

t

F ′(JxK, JyK)

(b) STC based on HE

Fig. 1: Flowchart for STC based on a) GC and b) HE divided
in precomputation (light grey) and online phase (dark grey).

that they are not revealed to third parties but can still be used
to jointly compute F(x, y). As STC exhibits a performance
asymmetry between the two parties, we refer to them as client
C with private input x and server S with private input y in
the following. Today, two predominant approaches for STC
are co-existing: Garbled Circuits (GCs) and Homomorphic
Encryption (HE). All frameworks we compare in this paper are
based on either one or a combination of these two approaches.
A qualitative flowchart for both approaches is depicted in
Figure 1. It is important to differentiate between the precom-
putation phase (light grey), comprising operations that can be
performed before the concrete inputs are known, and the online
phase (dark grey), comprising those operations which require
the concrete inputs. HE-based STCs, e.g., usually require
encrypted randomness that can be precomputed in order to
speed up the operations on the actual inputs. We now describe
the two STC approaches and their combination in more detail.

A. Garbled Circuits

GCs were proposed by Yao in 1982 [17] as the first
approach to STC and later proven practical by Malkhi et al.
[16]. In the following, we present GCs using Figure 1(a).

Precomputation phase: In the precomputation phase, the
GC approach requires that the functionality F that should
be computed is represented as a Boolean circuit. A Boolean
circuit representation of F can be automatically constructed,
e.g., with an adequate compiler from a program written in
a higher level language [16]. Compiling the Boolean circuit
can be very time and memory consuming, but needs to be
done only once as the constructed circuit can be reused for
multiple runs (thus, it is omitted in Figure 1(a)). After the
circuit has been constructed, S proceeds by encrypting and
permuting the truth table entries for each circuit gate. This
step is called garbling and we refer to the garbled circuit as
F̃(·). In order to construct size-efficient circuits, S at this point
requires knowledge on the length of the inputs, denoted by |x|
and |y|. For further details on (garbled) circuit construction
and numerous optimizations we refer to [16], [18], [19]. After

garbling the circuit, S sends the garbled circuit F̃(·) to C. Since
F̃(·) can become quite large, this transfer can cause significant
overheads (slanted arrows in Figure 1(a)). However, up to here,
all operations can be precomputed if |x| and |y| are known.

Online phase: The online phase of the protocol can start
as soon as the concrete inputs x and y are known. For this,
S garbles the bits of its input y with the keys used to encrypt
the circuit F(·) (see [16], [18] for details) and transfers the
resulting garbled input ỹ to C. Since ỹ appears seemingly
random to C, it does not learn anything about S’s private input
y. To create its own garbled input x̃, C obtains the keys for
the bits of its own private input x over an Oblivious Transfer
(OT) protocol from S. This prevents S from learning anything
about x. For each input bit, one run of the OT protocol is
required. This can cause severe processing and communication
overheads. However, state-of-the-art OT protocols perform
significant parts in the precomputation phase. After obtaining
x̃ and ỹ, C evaluates F̃(x̃, ỹ) by decrypting the garbled circuit
gate by gate and finally obtains the result.

B. Homomorphic Encryption

HE schemes allow to compute specific arithmetic oper-
ations under encryption, e.g., the Paillier cryptosystem [20]
allows addition, while ElGamal [21] is multiplicatively ho-
momorphic. Although Fully Homomorphic Encryption (FHE)
schemes that provide both addition and multiplication on ci-
pher texts exist, they currently still cause prohibitive overheads.
Thus, multiplication for Paillier or addition for ElGamal is
currently more efficiently realized by an interactive protocol
where the client helps the server to perform the respective
operation. Using secure addition and multiplication, C and S
can securely evaluate a representation of F as an arithmetic
circuit as depicted in Figure 1(b).

Precompuation phase: We assume that S and C have
agreed upon a protocol F ′(·) for arithmetically evaluating
F(·). Usually the privacy engineer builds F ′(·) by hand from
different higher-level sub-protocols offered by the framework
of choice, e.g., for comparison, which are realized using secure
additions and multiplications. C then generates a key pair for
the chosen homomorphic crypto system and shares the public
key with S. Importantly, this key pair needs to be generated
only once. Hence, S could already be in possession of the
public key from previous computations. To considerably speed
up the online phase, both parties can then precompute several
operations, e.g., randomness for encryption or additive blinds.

Online phase: C triggers the start of the protocol by sending
its encrypted input JxK to S. Then, S evaluates F ′ on C’s
encrypted input JxK and its own input y. For this, S can
perform some operations locally, e.g., addition and scalar mul-
tiplication for Paillier, while other operations, e.g., ciphertext
multiplication or comparisons, have to be realized through
interactive protocols involving C. This interaction has a major
impact on the communication overheads and performance of
HE-based STC. Finally, S obtains the encrypted result and
sends it to C who decrypts it, and, if desired, gives it to S.

C. Hybrid Approaches

The GC approach is based on Boolean logic and, thus,
logical operations can be performed quite efficiently, while

arithmetic operations are more expensive. Contrary, arithmetic
operations can be handled quite efficiently with HE. It thus
is promising to combine both approaches and choose between
them depending on the operation to be computed. This can be
realized by converting between HE and GC at runtime [18].

III. METHODOLOGY

Our goal is to provide privacy engineers with a dependable
and comparable performance evaluation of recent STC frame-
works, compilers, and libraries (Section III-B). To achieve
this, we evaluate the selected frameworks along six different
benchmarks (Section III-A), four network settings, and two
different computational resource settings (Section III-C) that
bring out the advantages and disadvantages of each framework.

We especially emphasize that we take the point of view of a
privacy engineer who regards STC only as a tool for engineer-
ing privacy-preserving systems. Such a privacy engineer wants
to use the considered frameworks out-of-the-box and cannot be
expected to significantly modify or optimize the chosen STC
framework according to his needs. This approach has three
notable consequences: First, we compare the STC frameworks
in their current state, i.e., including all their differences in the
underlying approach, protocols, and implementations. Second,
we reduce any modifications for implementing our benchmarks
to the minimum and implement missing functionality only
according to standard solutions from literature. Finally, we im-
plement our benchmarks in a straightforward way guided only
by the frameworks’ available documentation and examples and
with the background knowledge presented in Section II.

A. Benchmarks

We use six different benchmarks to compare the different
STC frameworks. In the following, we use [x] and [y] to denote
the garbled or encrypted input of the client C and server S,
respectively. We write [X] and [Y] if these inputs are vectors
and [X]|[Y] for the concatenation of these vectors. If not stated
otherwise, we assume a length of l = 32 bit per input.

1) Addition and Multiplication: Arithmetic operations are
the basis for nearly every real-world use case of STC [2], [4],
[5], [22]. Thus, our first two benchmarks consist of secure
additions ADD([x], [y]) and multiplications MULT([x], [y]).

2) Minimum and Argminimum: Determining the minimum
and the corresponding argument of a vector of numbers is
an important building block, e.g., for secure nearest neighbor
search [23]. Our third benchmark MIN([X], [Y]) is thus to find
the minimum element in the combined input X|Y . Addition-
ally, in a fourth benchmark, we measure the time for finding
the argminimum, i.e., ARGMIN([X, IX)], [Y, IY]), where IX
and IY are the indices corresponding to X and Y and the
output is the smallest element from the combined vectors X
and Y and its corresponding index from IX or IY .

3) Matrix Multiplication: In our fifth benchmark,
MATRIXMULT([X], [Y]), the inputs X and Y are
matrices which are multiplied according to standard
matrix multiplication, i.e., we separately compute each
Zi,j =

∑n
k=1 Xi,k · Yk,j . Besides being an indispensable

operation in many algorithms, matrix multiplication is
an interesting benchmark because it allows the evaluated
frameworks to demonstrate their use of parallelization.

Fairplay SeComLib TASTY mightbeevil CBMC-GC
Approach GC HE GC/HE GC GC
Type Compiler Library Interpreter Framework Compiler
Language SFDL C++ TASTYL Java ANSI-C
Network X 7 X X X
Addition X X X X X
Multiplication 7 X (X) 7 X
Comparison X X X X X
Minimum 7 X (X) (X) 7

Argmin 7 7 7 7 7

TABLE I: Comparison of the STC frameworks.

4) Sorting: We choose sorting, SORT([X], [Y]), as our
sixth benchmark, because it requires a mix of logical oper-
ations (comparisons) and arithmetic operations (for the condi-
tional swaps in HE-based STC). However, most popular sorting
algorithms such as Quicksort or Mergesort require array access
at private locations when implemented as STCs. Private array
access is not available in mightbeevil, TASTY, and SeCom-
Lib and is also far from trivial to implement. In particular,
according to our methodology, we cannot expect a privacy
engineer employing STC merely as a tool to implement this
functionality. Thus, we choose Bitonic sorting to implement
SORT([X], [Y]), which does not require private array access
and can thus be much more easily implemented by a privacy
engineer using the considered framework. We use the same
algorithm for all frameworks to maintain comparability, even
though Fairplay and CBMC-GC support private array access.

B. STC Frameworks

In this section, we introduce the considered STC frame-
works in chronological order. Table I summarizes the most im-
portant features of these frameworks and whether they support
the basic operations required to implement our benchmarks1.

1) Fairplay: Malkhi et al. propose the Fairplay framework
[16], a proof-of-concept of Yao’s garbled circuits [17]. Fairplay
provides a compiler that translates a program written in the
special SFDL language into a garbled circuit as well as a
runtime environment, which handles the evaluation of the
resulting garbled circuit. Since most optimizations for GCs
were proposed only after Fairplay was released, Fairplay only
optimizes the size of the compiled Boolean circuit and applies
the point-and-permute decryption technique [16]. Fairplay’s
SFDL language provides arithmetic operators, bit wise op-
erators, and comparison operators. Multiplication as well as
minimum/argminimum are not natively supported by SFDL
and we had to implement this functionality ourselves.

2) SeComLib: The Secure Computation Library (SeCom-
Lib) [11] developed at the Technical University Delft is a C++
library comprising different homomorphic encryption systems
and STC protocols. It has been used to realize different applica-
tions, including face recognition [2] or recommender systems
[4]. The library natively supports the required arithmetic and
logical operations, comparisons, and also offers a minimum
algorithm. An argminimum building block was not available,
so we had to add this feature. Unlike the other frameworks,
SeComLib offers no network support and client and server
communicate locally over shared memory. For comparability,
we thus added basic networking support using Boost Asio.

3) TASTY: Henecka et al. propose the TASTY interpreter
[8] and use it to implement secure face recognition as well

as AES with distributed keys. Notably, TASTY is the only
framework that uses the hybrid STC approach. It defines its
own language called TASTYL, which is a subset of the Python
programming language. The authors claim that TASTYL pro-
vides a wide range of arithmetic operations on encrypted and
logical operations on garbled values. However, we found that
multiplication of cipher texts did not work even in the provided
tests. Thus, we had to reimplement the standard approach to
ciphertext multiplication using HE and additive blinds [18].
Also, we found that garbled vectors for minimum selection
could not be constructed from plain inputs but only from
homomorphic vectors which incurs significant, unnecessary
overheads. To avoid this indirection and offer fair comparison,
we implemented an alternative minimum algorithm using the
garbled value types and the built-in comparisons directly.

4) mightbeevil: Huang et al. propose mightbeevil [7], a
Java framework for GCs which, e.g., has been used for secure
biometric identification [22]. mightbeevil provides no language
support but only circuit building blocks, which directly in-
volves the privacy engineer in building and optimizing the
resulting circuits. This approach follows the authors’ claim that
hand-optimized circuits are more efficient than automatically
optimized circuits such as those built by Fairplay, CBMC-
GC, or TASTY. The main contribution of mightbeevil is a
special pipelined runtime environment, which allows to stream
and evaluate gates as soon as they are created. mightbeevil
provides circuit building blocks for addition and an optimized
comparator building block for selecting the minimum of two
values. We generalized minimum selection to n inputs and
added building blocks for multiplication and argminimum.

5) CBMC-GC: Holzer et al. present CBMC-GC [14], a
compiler which takes a protocol written in ANSI-C and
automatically builds a garbled circuit from it using most
known circuit optimization techniques and aggressive SAT-
based optimizations using the CBMC model checker. CBMC-
GC uses the mightbeevil framework as runtime environment
for handling inputs and the necessary network communication.
Because CBMC-GC actually only supports the direct language
features of C but not, e.g., the standard library, addition,
multiplication, and comparison were available but we had to
implement minimum and argminimum algorithms ourselves.

6) Not considered: Apart from the mentioned five frame-
works, we surveyed further approaches but did not include
them for our evaluation for different reasons, which we briefly
summarize here. Schropfer et al. propose L1 [13], an in-
termediate language which abstracts from different GC and
HE-based STC approaches. As another hybrid approach, L1
would have been very interesting for our evaluation, however,
neither source code nor executables were available publicly
or on demand. Further, the Secure Multiparty Computation
Language (SMCL) [24] was not considered, because it is
officially discontinued and the code is no longer available.
Finally, MacKenzie et al. propose a compiler for automatic
generation of STCs in [12] based on a 2-out-of-2-secret sharing
scheme. However, since their compiler supports only field
operations over Zq , i.e., addition, multiplication, and inversion,
our minimum, argminimum, and sorting benchmarks could not
have been implemented without significant additions, which
we consider inadequate for a privacy engineer.

We deliberately put our focus on two-party computation,

Server Desktop Client Mobile Client
CPU Intel Xeon E5-2650 Intel i7-4770S Intel Atom N550
Speed 2.6GHz 3.1GHz 1.5GHz
Cores 16, 32 Threads 4, 8 Threads 2, 4 Threads
RAM 32GB 16GB 1GB

TABLE II: The server and clients used in the evaluation.

LAN Wi-Fi WAN 3G
Bandwidth 100Mbit/s 16Mbit/s 16Mbit/s 370 kbit/s
Latency 0.3ms 5ms 40ms 300ms

TABLE III: The four different network settings.

but acknowledge that there exists an even greater variety of
Secure Multi-Party Computation (SMC) frameworks, compil-
ers and libraries, e.g., the open-source SEPIA library [9], the
closed-source Sharemind framework [10], or most recently the
PICCO compiler for C [15]. Because SMC follows a different
setting than STC, both approaches are difficult to compare
and we thus did not consider these frameworks. However, a
dependable and fair comparison of SMC frameworks is just as
much needed as for STC.

C. Device and Network Scenarios

Table II summarizes the devices used for the evaluation.
As server we chose a high powered machine that can execute
up to 32 threads on 16 cores with 2.60GHz and 32GB RAM.
This server is able to handle the huge memory demand during
compilation of garbled circuits. As clients we chose two differ-
ent devices, one similar to a standard desktop computer with
moderate resources and one similar to a lesser powered mobile
device. The low computational resources of the mobile device
should make evident the different processing demands among
the considered framework and expose excessive overheads. We
chose a Lenovo Ideapad S10-3 as mobile platform, because
most of the considered frameworks could not directly be ported
to modern mobile platforms such as Android or iOS.

We further consider four different network settings that
feature different bandwidth and latency (Table III). The most
performant setting is the LAN setting, where hosts are con-
nected over a 100Mbit/s switch. The Wi-Fi and WAN settings
feature lower bandwidths which should already limit STC pro-
tocols that incur excessive traffic. The Wi-Fi setting provides
a realistic impression of the performance of STC protocols in
mobile but local scenarios, e.g., using Wi-Fi direct. The WAN
setting features a significant latency that should be notable in
STC protocols with high amount of interaction. The fourth and
most challenging setting, the 3G setting, provides only little
bandwidth and a high delay, which gives a realistic impression
of the feasibility of STC in wide-area mobile scenarios.

IV. PERFORMANCE COMPARISON

We executed 10 measurement runs for the combination of
each of the benchmarks presented in Section III-A with each
client device (Table II), all network settings (Table III), and
with varying input sizes n (i.e., the number of operations of the
individual benchmark). We measure the time until both client
and server side have completed the computation (as illustrated
in Figure 1), including precomputations. However, we exclude
the time necessary for compiling the Boolean circuit, as this
needs to be done only once (c.f. Section II-A). As several
experiments quickly reached a run time in the order of dozens

LAN-desktop LAN-mobile 3G-desktop 3G-mobile
0

100

200

300

400

500

600
Fairplay mightbeevil CBMC-GC TASTY SeComLib

Fig. 2: Runtimes [s] for Addition.

of minutes to hours, we cut off all experiments at a time
limit of 10min = 600 s per run as longer run times make
a framework infeasible for privacy engineers.

Our extensive performance measurements provide an abun-
dance of interesting results which we unfortunately cannot
cover in full detail here. Thus, in this paper we focus on the
most important and interesting settings and results1. In particu-
lar, we limit our analysis to the LAN and 3G network settings
which represent the extremes of the considered settings. The
following plots show the measurement results grouped by the
combination of network setting and client device. In each
group, one bar corresponds to one of the five frameworks and
shows the cumulative runtime for the different input sizes n.
When a framework failed for a particular input size it also
always failed for all larger input sizes, which we marked by
horizontal lines above the respective bar, the number of lines
indicating the number of failed input size levels.

Addition: For addition (Figure 2), all frameworks except
Fairplay were able to handle the n = 20, 40, 60, 80, 100
inputs in all networks and on both client devices (Figure 2).
Fairplay failed to compile circuits for the last three input
sizes n = 60, 80, 100. Surprisingly and contradicting the STC
folklore, the GC-based approaches CBMC-GC and mightbeevil
performed better than the HE-based approaches TASTY and
SeComLib in the LAN setting. This is due to the comparably
low computational effort for garbling circuits compared to the
encryption of the inputs. The comparison of the desktop with
the mobile client for which the HE-based approaches show
worse performance substantiates this result. However, when
switching to the bandwidth-constraint 3G setting, network
overhead for transmitting the potentially large GCs becomes
larger than the computation overhead for HE-based approaches
which had to transfer far less data. Thus, in these scenarios the
HE-based approaches outperform the GC-based ones.

Multiplication: For multiplication (Figure 3), HE-based
STC were able to play out their widely assumed strength,
with TASTY and SeComLib delivering the best performance
in all networks and on all clients (Figure 3). Notably, Fairplay
failed to handle input sizes n = 60, 80, 100 due to failure
of compilation, while mightbeevil failed on the mobile device
during streaming of circuits even for n = 40. The highly
optimized circuits of CBMC-GC are only able to compete with
the HE-based approaches in the GC-favorable LAN network
setting. Comparing to the 3G setting, we again observe that
performance of the GC-based approaches is severely limited

LAN-desktop LAN-mobile 3G-desktop 3G-mobile
0

100

200

300

400

500

600
Fairplay mightbeevil CBMC-GC TASTY SeComLib

Fig. 3: Runtimes [s] for Multiplication.

LAN-desktop LAN-mobile 3G-desktop 3G-mobile
0

100

200

300

400

500

600
Fairplay mightbeevil CBMC-GC TASTY SeComLib

Fig. 4: Runtimes [s] for Minimum.

by the excessive network overheads for transmission of the
garbled circuits. Fairplay and mightbeevil exceeded the 10min
limit already for 20 and 40 inputs, respectively. CBMC-GC
manages all inputs sizes below the cut-off threshold but is still
approximately 4-5 times slower than the HE-based approaches.

Minimum: As noted earlier (Section II-C), GC-based STC
is rooted in Boolean logic and thus expected to perform logi-
cal operations very efficiently. Indeed, minimum computation
(Figure 4) was most efficiently handled by the GC-based
approaches (Figure 4), while Fairplay again cannot handle
n = 60, 80, 100 inputs. Note that TASTY switches to GC-based
STC for minimum computation, thus SeComLib presents the
only HE-based approach for this task. SeComLib implements
secure comparisons in a protocol that requires one round of
communication per input bit which already causes excessive
overheads even in the LAN setting and clearly becomes
infeasible in the 3G setting. The computational overheads,
judging by the comparison of desktop and mobile devices are
almost negligible in comparison. We note that more efficient
comparison protocols have been proposed for HE-based STC
but are not implemented by SeComLib. While mightbeevil and
CBMC-GC build efficient circuits and thus maintain reasonable
performance in the 3G setting, in our experiments TASTY
suffered from time out errors in the 3G setting on both the
desktop and mobile device.

Argminimum: For argmin computation (Figure 5) all eval-
uated frameworks exhibit overheads within the same order
of magnitude and consistent with the previous results on
minimum computation. This is expected as argmin is essen-
tially a minimum computation combined with comparably
simple operations to keep track of the argument leading to
the minimum value. As before, mightbeevil and CBMC-GC

LAN-desktop LAN-mobile 3G-desktop 3G-mobile
0

100

200

300

400

500

600
Fairplay mightbeevil CBMC-GC TASTY SeComLib

Fig. 5: Runtimes [s] for Argminimum.

present the best choices, while TASTY fails to run in the 3G
setting as before and SeComLib runs longer than 10min even
for only n = 20 inputs due to the slow comparison protocol.

Matrix Multiplication: For this benchmark, we multiplied
two matrices of increasing size, i.e., 3× 3, 5× 5, 10× 10, and
15 × 15. Matrix multiplication (Figure 6) showed the most
diverse results among all our benchmarks. First, Fairplay did
not manage to build circuits, not even for the multiplication of
two 3×3 matrices, i.e., a circuit comprising 27 multiplications
and 18 additions, which is consistent with our results on
addition and multiplication. mightbeevil could handle 5 × 5
matrices in the LAN setting but failed for this size in the
3G setting. Interestingly, mightbeevil is much faster at matrix
multiplication than its performance in the isolated addition
and multiplication benchmarks suggest. Considering, e.g., that
mightbeevil needs approximately 290 s to multiply 20 values
in the 3G setting on the desktop client it is surprising that
it can handle the 3 × 3 matrix multiplication, which requires
27 multiplications, in less than 100 s in the same setting. A
possible reason is that matrix multiplication involves, in this
example, only 3 · 3 = 9 inputs, while the addition and mul-
tiplication benchmark involve 20. Thus matrix multiplication
needs less Oblivious Transfer runs to exchange inputs. We
validated this suspicion by running multiplication for might-
beevil again but this time repeatedly n = 20, ..., 100 times on
the same input. Here, mightbeevil was up to four times faster
which explains the performance gain. CBMC-GC was able to
handle multiplication of 10× 10 matrices, but did not exhibit
an increased performance as mightbeevil did. This indicates
potential for optimization in CBMC-GC. We could not obtain
any results for TASTY, since TASTY’s built-in functionality to
multiply homomorphically encrypted values was not working
when the two inputs were not encrypted by the same party.
For the multiplication benchmark, we therefore implemented
secure multiplication manually, but TASTY’s lacking support
for functions or loops over encrypted values prevented us from
implementing matrix multiplication using our multiplication
subprotocol as a building block. In consequence, we could
not implement matrix multiplication in TASTY. The other HE-
based approach, SeComLib, was the only approach able to
handle all input sizes. However, it broke the 10min time limit
for 10×10 matrices in the 3G setting and for 15×15 matrices
on the mobile client in the LAN setting.

Sorting: For this benchmark, client and server each pro-
vided a vector of length n = 8, 16, 32, 64 which were joined
and sorted. This benchmark (Figure 7) pushed most frame-

LAN-desktop LAN-mobile 3G-desktop 3G-mobile
0

100

200

300

400

500

600
Fairplay mightbeevil CBMC-GC TASTY SeComLib

Fig. 6: Runtimes [s] for Matrix multiplication.

LAN-desktop LAN-mobile 3G-desktop 3G-mobile
0

100

200

300

400

500

600
Fairplay mightbeevil CBMC-GC TASTY SeComLib

Fig. 7: Runtimes [s] for Sorting.

works to their limits. Fairplay could compile circuits only for
n = 8 but failed to execute them. mightbeevil was by orders of
magnitude faster than the other frameworks in all considered
settings. It ran out of memory on the mobile device only for
n = 64 and timeouts occurred in the two 3G settings only
for input sizes n = 64 and n = 32, respectively. CBMC-
GC ran out of memory on the mobile client already for input
sizes n = 16, 32, 64 and timed out on the desktop client for
n = 32 and n = 16 in the LAN and 3G setting, respectively.
TASTY showed medial performance in the LAN setting, but
failed entirely in the 3G setting again due to timeouts during
execution. SeComLib was able to handle all settings but timed
out for all but the LAN evaluation settings with n = 8 inputs.

V. DISCUSSION

We first qualitatively discuss usability aspects of the frame-
works then proceed with a summary of our results and point
out possible improvements and new research directions.

A. Qualitative Analysis

Fairplay’s own protocol language has very low expressive-
ness, e.g., it does not allow recursion and only fixed sized
loops. However, the available functionality works both reliably
and is intuitive even to inexperienced STC developers. Thus,
benchmarks that use only the built-in functionality were easy
and anything beyond that hard to implement. Fairplay is only
available as 32-bit Java bytecode and thus limited to 4GB
of RAM usage, which led to the highest failure rate of all
compared frameworks (c.f. Table IV).

mightbeevil requires programming on circuit level, which
presents a high hurdle to privacy engineers using STC merely

Fairplay mightbeevil CBMC-GC TASTY SeComLib
LAN+Desktop 71.4 71.4 7.1 7.1 3.6 14.3 17.9 17.9 0.0 10.7
LAN+Mobile 71.4 71.4 28.6 28.6 14.3 17.9 21.4 21.4 0.0 10.7
3G+Desktop 71.4 75.0 7.1 21.4 3.6 25.0 67.9 67.9 0.0 57.1
3G+Mobile 71.4 78.6 28.6 32.1 14.3 25.0 67.9 67.9 0.0 57.1
Average 71.4 74.1 17.9 22.3 8.9 20.5 43.8 43.8 0.0 33.9

TABLE IV: Percentage of failed evaluation settings, excluding
and including timeouts, respectively.

as a tool. Also this involves a lot of repetition and boilerplate
code resulting in by far the highest amount of Lines of Code
(LOCs)1 for the implementation of benchmarks. On the other
side, mightbeevil’s low level approach allows for optimizations
down to the level of individual gates. This makes mightbeevil a
good choice for building STC frameworks with better usability
on top, as done by CBMC-GC.

CBMC-GC allows to develop STCs in ANSI-C which is
convenient and even allows the developer to use existing and
well established tool chains to build, test, and debug protocols
before running them as STCs. Together with Fairplay, CBMC-
GC also required by far the smallest number of LOCs to
implement our benchmarks. On the downside, handling in- and
outputs was very cumbersome and required to write additional
scripts to generate source code automatically.

TASTY, in its current state, was very hard to use. We found
that some crucial functionality, such as HE-based multiplica-
tion or creation of garbled values from input, was broken.
TASTY’s source code is not available and documentation is
scarce, which aggravates these issues and often prevented
work-arounds. Furthermore, the runtime environment regularly
failed in the 3G network setting. However, the results we
could obtain are promising and show that a hybrid approach
can provide a more balanced performance. TASTY’s approach
required more LOCs than the compiler approach taken by
Fairplay and CBMC-GC, but still far less than mightbeevil.

SeComLib was well documented and maintained and im-
plementing our benchmarks was mostly straightforward, ex-
cept for the need to manually implement network support. The
LOCs were comparable to TASTY. Notably, SeComLib was the
only framework able to handle all our benchmarks, but did still
time out frequently especially for the logical tasks.

B. Results Summary and New Research Directions

We conclude the discussion of our results by summing up
the feasibility of our benchmarks in the considered frame-
works. There were two error sources during the evaluation:
i) complete failure to compile or evaluate a circuit (marked in
the plots by a number of horizontal lines corresponding to the
number of failed input sizes) and ii) exceeding the 10min time
limit (bars which exceed the limits of the plot). Table IV sums
up how often these errors occurred relative to the total number
of evaluation settings (benchmarks × networks × devices ×
input sizes). Each cell lists two percentages, i.e., the percentage
of failed evaluation settings excluding and including successful
but timed-out runs, respectively. In each row the respective
minima are marked in bold.

Our general insight from Table IV and the previously
discussed results is that although STC has received a lot of at-
tention from theoretical research, the existing STC frameworks

still need major improvements in the following directions,
some of which open exciting new research directions.

Real-world Problem Instances: The frameworks failed not
randomly but for the larger input sizes and at that quite
often. Although CBMC-GC provides a notable exception, STC
frameworks need to improve towards handling larger input
sizes so that STC becomes a viable solution at least for small
real-world problems. Here, mightbeevil’s streaming approach
is promising but needs to be developed further.

Balanced Performance: The performance of the frame-
works was very imbalanced mainly due to the underlying
strengths and weaknesses of the chosen STC approach. TASTY
showed that a hybrid approach can potentially achieve a better
balance and maintain a reasonable over all performance. We
argue that STC frameworks should better balance and optimize
their overall performance so that a privacy engineer is not
forced to use different frameworks for different tasks.

Parallelization: Our benchmarks, e.g., matrix multiplica-
tion, offer much potential for parallelization. Only mightbeevil
and CBMC-GC made use of parallelization during runtime,
which improved performance in the LAN setting but had little
effect for 3G. Notably, parallelization has shown huge perfor-
mance gains in SMC frameworks [15]. We thus propose future
research on how to use parallelization in STC to embrace the
development towards multi-core architectures. Similar to [15],
parallelization should be supported on language-level so that
even an inexperienced privacy engineer can benefit from it.

Mobile STC: Mobile scenarios and applications are already
pervasive today and the demand for privacy-preservation in
these applications is evident. However, as the difference be-
tween the numbers including and excluding timeouts in Table
IV shows, all frameworks experienced significant problems in
the constrained 3G network setting and for the mobile, less
powered client. STC is thus not yet a viable tool for mobile
applications. In order to address mobile STCs, frameworks
need to significantly reduce networking overhead as well as
to account for the resource asymmetry, e.g., by shifting more
computations to the server. Especially the direction of STC
under asymmetric resource distribution has received only little
attention and provides an interesting new research direction.

Interactive STC: In interactive STCs neither the input nor
its length are known or bounded a priori, but arrive over
time during the run of the application. Examples are, e.g.,
WiFi-based (indoor) localization [25] and speech recognition
[26]. The HE-based STC frameworks can handle these appli-
cations, but they show inferior performance in logical tasks
which are heavily used in both examples [25], [26]. GC-based
frameworks are currently only efficient if the input length is
known and circuits can be built and optimized accordingly.
They thus do not support interactive STC. Here, hybrid STC
is promising to overcome these limitations, but needs to be
researched further for interactive STCs.

VI. RELATED WORK

The performance of each of the evaluated frameworks
is also evaluated in the corresponding papers. However, the
measurements are performed in an incomparable manner and
thus do not allow a privacy engineer to identify the right

tool for the current task. In [16], Fairplay is benchmarked
for addition and comparisons in a LAN and WAN network
setting for a single client device. mightbeevil is benchmarked in
[7] for Hamming and Levensthein Distance, Smith Waterman
similarity, as well as AES against the fastest known approaches
at that time, including TASTY. However, no details regarding
the network or used devices are given and only ultra short-
time security levels are used. The CBMC-GC paper [14]
provides the most comprehensive benchmarks and considers
a LAN and a WAN scenario, but does not compare to other
frameworks. For SeComLib [11] only performance results for
different application scenarios, e.g., face recognition [2] and
recommendations [4], are available, without any comparison
to implementations of these use cases in other frameworks.
TASTY [8] also uses concrete applications as benchmarks, i.e.,
face recognition, set intersection, and AES, and compares itself
against SeComLib’s implementation of face recognition and
Fairplay’s AES implementation. Different network settings or
client devices are not considered. Overall, the results presented
in these works are difficult to compare due to the differences
in i) network parameters, ii) device resources, and iii) chosen
benchmarks. In contrast, our work fixes the network settings,
client devices, and benchmarks in order to provide a fair and
dependable performance comparison of these frameworks.

Schröpfer et al. [27] present an analytical performance
model for forecasting the runtime of STCs, which they validate
by an empirical study of the problem of secure divisions imple-
mented in their own L1 framework [13]. Unfortunately, they
do not generalize, parameterize, and validate their performance
model for other STC frameworks. This would be interesting
future work, for which our presented benchmarks already
provide a good basis. Blanton also considers the problem of
secure divisions and provides an empirical study in [28], but
focuses on different division protocols rather than different
frameworks, network settings, or devices. While these works
rather focus on analyzing the theoretical differences in the
performance of STC approaches and protocols, ours takes
a rather end-user centric point-of-view and focuses on the
practical performance of concrete STC frameworks.

VII. CONCLUSION

STC has proven feasible in several use cases, e.g., face
recognition [2], [3], recommender systems [4], and even ge-
nomic testing [5]. However, adoption of STC in privacy engi-
neering is still scarce due to significant performance (Section
IV), usability issues (Section V-A), and feasibility restrictions
(Section V-B). These particularly challenge inexperienced de-
velopers of STCs. Recent STC frameworks have begun to
tackle these issues, but are mostly evaluated in an incomparable
manner which makes it difficult for privacy engineers to choose
the right framework for their purpose. Thus, in our work, we
carried out an objective and thorough performance evaluation
of five recent STC frameworks using different benchmarks,
network settings, and devices. While our performance results
are mostly in favor of the newer GC-based approaches, we also
observe that these approaches could not handle a significant
part of the evaluation settings due to the huge overhead
imposed by the Boolean circuit function representation. Based
on the shortcomings identified in both our quantitative and
qualitative analysis, we point out potential for improvements
and the need for further research in STC. In conclusion,

none of the considered framework presents the single optimal
solution for privacy engineers. Instead, privacy engineers must
make a choice that considers the type of operations used, the
network environment, and the available resources on client and
server. Our results provide privacy engineers with a thorough
data basis for making this choice in an informed manner.

Acknowledgment: This work has been funded by the Excel-
lence Initiative of the German federal and state governments.

REFERENCES

[1] PEW Research, “Public Perceptions of Privacy and Security in the Post-
Snowden Era,” http://www.pewinternet.org/?p=12225, 2014.

[2] Z. Erkin et al., “Privacy-Preserving Face Recognition,” in PETS, 2009.
[3] A.-R. Sadeghi et al., “Efficient Privacy-Preserving Face Recognition,”

in ICISC, 2009.
[4] Z. Erkin et al., “Generating Private Recommendations Efficiently Using

Homomorphic Encryption and Data Packing,” IEEE Trans. Inf. Foren-
sics Security, vol. 7, no. 3, 2012.

[5] E. De Cristofaro et al., “Genodroid: Are Privacy-preserving Genomic
Tests Ready for Prime Time?” in ACM WPES, 2012.

[6] I. Damgård et al., “Asynchronous Multiparty Computation: Theory and
Implementation,” in PKC, 2009.

[7] Y. Huang et al., “Faster Secure Two-party Computation Using Garbled
Circuits,” in USENIX Security, 2011.

[8] W. Henecka et al., “TASTY: Tool for Automating Secure Two-party
Computations,” in ACM CCS, 2010.

[9] M. Burkhart et al., “SEPIA: Privacy-preserving Aggregation of Multi-
domain Network Events and Statistics,” in USENIX Security, 2010.

[10] D. Bogdanov et al., “Sharemind: A Framework for Fast Privacy-
Preserving Computations,” in ESORICS, 2008.

[11] “SeComLib,” http://cybersecurity.tudelft.nl/content/secomlib.
[12] P. MacKenzie et al., “Automatic Generation of Two-Party Computa-

tions,” in ACM CCS, 2003.
[13] A. Schropfer et al., “L1 – An Intermediate Language for Mixed-

Protocol Secure Computation,” in IEEE COMPSAC, 2011.
[14] A. Holzer et al., “Secure Two-Party Computations in ANSI C,” in ACM

CCS, 2012.
[15] Y. Zhang et al., “PICCO: A General-Purpose Compiler for Private

Distributed Computation,” in ACM CCS, 2013.
[16] D. Malkhi et al., “Fairplay - a Secure Two-party Computation System,”

in USENIX Security, 2004.
[17] A. Yao, “How to generate and exchange secrets,” in IEEE FOCS, 1986.
[18] V. Kolesnikov et al., “From Dust to Dawn: Practically Efficient Two-

Party Secure Function Evaluation Protocols and their Modular Design,”
IACR Cryptology ePrint Archive, 2010.

[19] V. Kolesnikov and T. Schneider, “Improved Garbled Circuit: Free XOR
Gates and Applications,” in ICALP, 2008.

[20] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” in EUROCRYPT, 1999.

[21] T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms,” in CRYPTO, 1984.

[22] D. Evans et al., “Efficient Privacy-Preserving Biometric Identification,”
in NDSS, 2011.

[23] S. Rane and P. Boufounos, “Privacy-Preserving Nearest Neighbor
Methods,” IEEE Signal Process. Mag., vol. 30, no. 2, 2013.

[24] J. D. Nielsen and M. I. Schwartzbach, “A Domain-Specific Program-
ming Language for Secure Multiparty Computation,” in PLAS, 2007.

[25] J. H. Ziegeldorf et al., “POSTER: Privacy-preserving Indoor Localiza-
tion,” in WiSec, 2014.

[26] M. Aliasgari and M. Blanton, “Secure Computation of Hidden Markov
Models,” in SECRYPT, 2013.

[27] A. Schröpfer and F. Kerschbaum, “Forecasting Run-Times of Secure
Two-Party Computation,” in QEST, 2011.

[28] M. Blanton, “Empirical Evaluation of Secure Two-Party Computation
Models,” CERIAS TR 2005-58, Purdue University, Tech. Rep., 2005.

