
Madtls: Fine-grained Middlebox-aware End-to-end Security for
Industrial Communication

Eric Wagner
eric.wagner@fkie.fraunhofer.de

Fraunhofer FKIE
RWTH Aachen University

David Heye
david.heye@rwth-aachen.de
RWTH Aachen University

Fraunhofer FKIE

Martin Serror
martin.serrror@fkie.fraunhofer.de

Fraunhofer FKIE

Ike Kunze
kunze@comsys.rwth-aachen.de

RWTH Aachen University

Klaus Wehrle
wehrle@comsys.rwth-aachen.de

RWTH Aachen University

Martin Henze
henze@spice.rwth-aachen.de
RWTH Aachen University

Fraunhofer FKIE

ABSTRACT

Industrial control systems increasingly rely on middlebox function-
ality such as intrusion detection or in-network processing. However,
traditional end-to-end security protocols interfere with the neces-
sary access to in-flight data.While recent work onmiddlebox-aware
end-to-end security protocols for the traditional Internet promises
to address the dilemma between end-to-end security guarantees
and middleboxes, the current state-of-the-art lacks critical features
for industrial communication. Most importantly, industrial settings
require fine-grained access control for middleboxes to truly operate
in a least-privilege mode. Likewise, advanced applications even
require that middleboxes can inject specific messages (e.g., emer-
gency shutdowns). Meanwhile, industrial scenarios often expose
tight latency and bandwidth constraints not found in the traditional
Internet. As the current state-of-the-art misses critical features,
we propose Middlebox-aware DTLS (Madtls), a middlebox-aware
end-to-end security protocol specifically tailored to the needs of
industrial networks.Madtls provides bit-level read and write ac-
cess control of middleboxes to communicated data with minimal
bandwidth and processing overhead, even on constrained hardware.

CCS CONCEPTS

• Networks → Middle boxes / network appliances; • Secu-
rity and privacy→ Security protocols; Hash functions and

message authentication codes.

KEYWORDS

industrial IoT, end-to-end security, middlebox

ACM Reference Format:

Eric Wagner, David Heye, Martin Serror, Ike Kunze, Klaus Wehrle, and Mar-
tin Henze. 2024. Madtls: Fine-grained Middlebox-aware End-to-end Secu-
rity for Industrial Communication . InACMAsia Conference on Computer and
Communications Security (ASIA CCS ’24), July 1–5, 2024, Singapore, Singapore.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3634737.3637640

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0482-6/24/07
https://doi.org/10.1145/3634737.3637640

1 INTRODUCTION

With the rise of the Industrial Internet of Things (IIoT), Indus-
trial Control Systems (ICSs) heavily rely on machine-to-machine
communication between constrained devices to realize control of
delicate physical processes [42]. Here, the timely and frequent ex-
change of short and predictable sensor and command messages
is essential to ensure precise control over, e.g., robot arms [52].
However, this reliable data exchange is heavily threatened by a
surge of attacks on the underlying industrial networks [5]. Due to a
widespread lack of security measures in these networks, attackers
can eavesdrop on traffic or even manipulate it, potentially causing
severe (physical) harm [27]. To thwart such attacks, the de-facto
standard is end-to-end security, primarily in the form of TLS.

While TLS experiences wide-scale adoption in the traditional
Internet, the prospects of deployments in industrial networks look
rather grim. One major roadblock in deploying end-to-end secu-
rity is the widespread use of middleboxes that rely on deep packet
inspection: Traditional middlebox functionality, such as intrusion
detection, requires access to sensor and actuator data to monitor
industrial processes [61], and the increasing interest in in-network
computing likewise requires read and write access to in-flight
data [43]. Hence, middleboxes prevent the deployment of tradi-
tional end-to-end security, raising a serious security dilemma.

To depict this issue, we consider an illustrative example of how
interconnected IIoT communication may look in the future in Fig-
ure 1. A controller operates a robot arm. An intrusion detection
system (IDS) and a traffic logging server monitor their communi-
cation. The industrial IDS analyzes traffic to detect anomalies and
flags suspicious packets. The traffic logging server only captures
flow metadata but stores suspicious packets entirely for potential
subsequent forensic investigations.

The naïve approach for middlebox access control while still
providing security is to create separate secure point-to-point con-
nections, one from robot arm to IDS, one from IDS to logging server,
and a final one from logging server to controller. This approach,
commonly referred to as SplitTLS [46], gives each middlebox full
access to manipulate messages. Consequently, a compromised IDS
could move the robot arm unexpectedly and thus damage expensive
equipment or cause physical harm. Since middleboxes are typically
placed at critical vantage points with access to large amounts of
traffic, they then become especially attractive targets for attackers.
Therefore, it is of utmost importance to deploy middleboxes in

https://doi.org/10.1145/3634737.3637640
https://doi.org/10.1145/3634737.3637640

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wagner et al.

Figure 1: Middleboxes should operate in a least-privilege

mode. For example, an industrial IDS has read-only access

to packets, and write access to a dedicated flag to mark sus-

picious traffic. A logging server can only read this flag.

a least-privilege mode. Considering the IDS from our example, it
should only have read access, except for writing to a single flag to
mark suspicious packets. In contrast, SplitTLS provides full insight
and control over the entire communication channel to middleboxes.

To address these limitations, middlebox-awareness has been pro-
posed to adapt end-to-end security protocols to the reality of mid-
dleboxes in corporate networks and the Internet [17]. A first branch
of research relies on searchable encryption [9, 36, 47, 55] or zero-
knowledge proofs [23, 63] to perform a limited set of computa-
tions (e.g., string matching) on encrypted data. While these ap-
proaches may work for basic rule-based intrusion detection, they
are too restrictive for most middleboxes in the industrial context.
Other proposals move middleboxes into Trusted Execution Environ-
ments (TEEs) [19, 26, 49, 56]. While such approaches work great in
theory, the secure implementation of the concept of TEEs is difficult
in practice, as recent attacks have shown [8, 44]. Finally, a branch
of research extends TLS to allow for the authorization of on-path
middleboxes to read or write to a predetermined set of communi-
cated data [4, 21, 37, 38, 45, 46]. Still, operating on the granularity
of complete messages or only supporting two access modes, these
proposals do not provide the fine-grained access control necessary
to operate middleboxes in a least-privilege mode.

While middlebox-aware end-to-end security thus offers an attrac-
tive solution for the security dilemma, current proposals do not ad-
dress the unique challenges of industrial communication. First, tight
latency and bandwidth demands, paired with resource-constrained
embedded hardware, require fast and efficient protocols [42]. Sec-
ondly, predictable and well-structured messages enable, but also
require, fine-grained control down to the bit level (instead of com-
plete messages) over the access rights of each involved middlebox
to constrain their privileges to a minimum. Thereby, we can mini-
mize the damage inflicted by potentially compromised middleboxes.
Thirdly, middleboxes may need to inject entirely newmessages (e.g.,
emergency shutdowns) into established communication channels,
where the least-privilege principle must also be upheld.

This paper tackles these state-of-the-art limitations by proposing
Middlebox-Aware DTLS (Madtls). In short,Madtls provides fine-
grained access control to industrial communication via specialized
cryptographic protocols. We enable the transparent segmentation
of messages to assign read and write access on a per-segment gran-
ularity. Therefore, each segment is encrypted and authenticated
individually. Here, Madtls leverages a specifically tailored mes-
sage authentication scheme to aggregate authentication data, thus

conserving valuable bandwidth. Moreover,Madtls provides an effi-
cient extension to the DTLS 1.2 handshake protocol to exchange the
additional information required by the communicating endpoints
and middleboxes. While industrial networks may rely on reliable
(e.g., TCP) or lossy channels (e.g., UDP, with a recent focus on wire-
less communication), we specifically target the more challenging
domain where packets may be lost arbitrarily. Still, the techniques
designed in this paper are easily transferable to traditional TLS
(over TCP) and other end-to-end protocols.

Contributions. To unlock the potential of middlebox-aware
end-to-end security for resource-constrained industrial networks,
we make the following contributions in this paper:

• We provide a taxonomy of middlebox use cases in industrial
communication and derive corresponding requirements for
middlebox-aware end-to-end security (Sections 2& 3).

• To meet these requirements, we designMadtls, which relies
on specifically tailored cryptographic schemes to enable the
distribution of fine-grained (down to the bit level) read and
write access rights to middleboxes (Section 4).

• To show the practical applicability and feasibility of our
approach, we prototypically implementMadtls as DTLS 1.2
extension and show its competitive performance in realistic
scenarios on representative hardware.

2 MIDDLEBOXES IN INDUSTRIAL NETWORKS

Middleboxes play an integral role in industrial networks for perfor-
mance enhancements and intrusion detection [40], but they also
severely hinder the adoption of traditional end-to-end security.
In the following, we first give a brief background on industrial
networks and why their unique properties hinder the use of tradi-
tional security protocols (Section 2.1). Afterwards, we provide an
overview of middlebox functionalities in industrial networks, specif-
ically focusing on the respective required access to communicated
data (Section 2.2). Finally, we derive why the current state-of-the-
art in middlebox-aware end-to-end security protocols cannot cope
with the inherent requirements of industrial networks (Section 2.3).

2.1 Security Challenges in Industrial Networks

Industrial networks are dominated by machine-to-machine commu-
nication that keeps physical processes running safely. Depending
on the underlying process, this communication can be subject to
harsh requirements w.r.t. latency and bandwidth [22]. In particular,
a plethora of sensors and actuators need to frequently exchange
messages, hence per-message bandwidth overhead is especially
expensive. Meanwhile, devices must often be kept small and cheap,
such that their processing resources are heavily constrained.

Communication has traditionally been facilitated via (reliable) ca-
bled connections using different application layer and subordinate
protocols. Today, ICS networks see a notable shift toward wireless
and, thus, lossy communication, partly enabled by new protocols
such as Sigfox or WirelessHART. Therefore, any security solution
cannot be tailored to a single protocol or communication medium
but must be adaptable to reliable as well as lossy communication.

Concerning security, encrypted and authenticated end-to-end
communication is still rarely seen within industrial networks [16],
despite being commonplace in the traditional Internet. The main

Madtls: Fine-grained Middlebox-aware End-to-end Security for Industrial Communication ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

(a) SplitTLS solutions allow full access to middleboxes.

(b) A least-privilege access for middleboxes would be preferable.

Figure 2: While SplitTLS allows full access to middleboxes,

achieving least-privilege access for middleboxes should be

the goal for middlebox-aware security protocols.

reason for this lack of security is that, in the past, industrial net-
works were designed without security as their inherent physical
separation from attackers seemingly sufficed. As this assumption
crumbles due to increased connectivity demands from industry (e.g.,
remotemonitoring) andmore advanced attacks, industrial networks
become increasingly exposed to cyberattacks. This vulnerability
is demonstrated impressively through a rising numbers of attacks
with, at times, detrimental consequences [5].

Addressing this lack of security and also accounting for the high
demands in industrial networks, we observe an increasing interest
in middlebox deployments [43]. Security-wise, these middleboxes
can, e.g., realize deep packet inspection for intrusion detection.
Regarding performance, the full range of functionality extends to a
diverse set of tasks including caching [24, 39], data aggregation [53],
fault detection [54], and in-network processing [15, 51, 52].

While these advancements alleviate specific limitations and some
security flaws within the IIoT, they also hinder properly deploy-
ing end-to-end security protocols, as we demonstrate in Figure 2.
Current industrial deployments of end-to-end security are mainly
realized with TLS or DTLS and can, at most, provide a so-called
SplitTLS [46] solution, where middleboxes can freely access and
modify any traffic that passes through them (cf. Figure 2a). However,
middleboxes are usually deployed for a particular task, so an ideal
security protocol would restrict read and write access to a minimum
(cf. Figure 2b). Only then can the IIoT operate in a least-privilege
mode and minimize the damage of compromised middleboxes.

2.2 Diversity of Industrial Middlebox Use Cases

To understand the requirements for middlebox-aware end-to-end
security in industrial networks, we need to understand the range of
potential tasks. Therefore, we categorize corresponding middlebox
applications according to their required access rights.

Read Access. Examples for read access include a middlebox
that caches, e.g., sensor readings to unburden the constrained end
devices [24, 39]. Similarly, industrial IDSs monitoring the physical
process to detect suspicious activities only require read access to
otherwise encrypted data for deep packet inspection [61].

Limited Read Access. However, even for tasks such as intru-
sion detection or caching, middleboxes often only require partial
insight into each message. For example, most Snort [3] rulesets

for Modbus (a widespread industrial communication protocol) do
not look beyond the function code field (indicating the type of a
message, e.g., request the state of an individual bit). Even more
sophisticated industrial IDSs only require partial read access to
messages in some cases [13, 14, 41]. Moreover, other use cases only
require partial read access by design: For fault detection, middle-
boxes only need access to selected sensor readings from specific
machinery to detect upcoming failures [54]. Similar access rights
to only specific sensor readings are necessary for complex event
detection, e.g., the outbreak of a fire [31, 43, 58].

Write Access. Middlebox tasks that require full write access to
messages are rare, e.g., when the middlebox translates between dif-
ferent application layer protocols [1, 57]. Instead, most middleboxes
that alter messages only require limited write access.

LimitedWrite Access.A typical example of limitedwrite access
in the industrial context and beyond is data compression, where a
middlebox can, e.g., base-delta encode timestamps for many differ-
ent data sources [48]. Similarly, in-network aggregation or other
map-reduce functionality can be executed by middleboxes that
only have write access to the corresponding data fields they are
reducing [53]. More industry-specific applications for restricted
write access include, e.g., the transformation of coordinates between
reference frames [34] or the insertion of precise timestamps into
payload data [33]. Furthermore, as seen in the example in Section 1,
various middleboxes may take advantage of flagging individual
packets, e.g., to mark them as suspicious.

Drop Messages. In the industrial context, it is often not desir-
able to directly drop messages due to irrevocable impact on the
physical process controlled by the system. Thus, industrial net-
works mostly only employ IDSs that flag suspicious traffic or alert
the operator through other channels. Still, for some use cases, a
middlebox requires the ability to drop messages even in industrial
networks, e.g., to downsample sensor readings [35, 58], carefully
reduce traffic [25], or if a serious cyberattack is identified with high
likelihood (i.e., the benefit of likely preventing a high-impact attack
outweighs the risk of blocking genuine traffic).

Inject Messages. Finally, middleboxes may also require the abil-
ity to inject messages, most importantly when a middlebox directly
responds to a request or event to reduce latency or traffic. Complex
event detection could, e.g., identify critical conditions such as a
fire [31], that warrant the issuing of emergency stop messages [15].
Other reasons to allow middleboxes to inject messages include re-
sponding caching servers [24, 39] or the enabling of low-latency
and low-jitter control commands [15, 51, 52].

Overall, we see that middleboxes in the IIoT cover a diverse
set of functionalities that require different levels of access to a
communication channel. Most importantly, these functionalities
are often specific to the IIoT andmust be consideredwhen designing
middlebox-aware end-to-end security.

2.3 Prior Work on Middlebox-aware Security

Research on such middlebox-aware security protocols goes back
over a decade for the traditional Internet [17], but we still see
few deployments today. Corresponding concerns can, among other
things, be traced back to the Internet community’s end-to-end
principle [10, 11], which is typically interpreted to imply that the

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wagner et al.

read-access write-access
Publication Year Venue Mechanism full limited full limited inject drop diff.

BlindBox [55] 2015 SIGCOMM searchable encryption
Embark [36] 2016 USENIX NSDI searchable encryption
BlindIDS [9] 2017 ACM AsiaCCS searchable encryption
PrivDPI [47] 2019 ACM CCS searchable encryption

ZKMB [23] 2022 USENIX Security zero knowledge proofs
Zombie [63] 2023 IEEE S&P zero knowledge proofs

SGX-Box [26] 2017 APNet trusted execution environment
Safebricks [49] 2018 USENIX NSDI trusted execution environment
Shieldbox [56] 2018 ACM SOSR trusted execution environment
Lightbox [19] 2019 ACM CCS trusted execution environment

mcTLS [46] 2015 SIGCOMM protocol extension
mbTLS [45] 2017 ACM CoNEXT protocol extension
maTLS [37] 2019 NDSS protocol extension
ME-TLS [38] 2019 IEEE IoTJ protocol extension
Stealth Key Exchange [21] 2023 ACM CCS protocol extension
mdTLS [4] 2023 ICISC protocol extension

Madtls 2024 ACM AsiaCCS protocol extension

: yes : partial : no
Table 1: The current state-of-the-art on middlebox-aware security protocols cannot address all requirements of industrial

networks. Searchable encryption or zero-knowledge proofs only provide limited functionality (e.g., string matching). Vul-

nerabilities within TEEs expose all approaches relying on them. Finally, extensions to the TLS protocol do not provide the

fine-grained access control required to truly operate middleboxes in a least-privilege mode. Moreover, no proposal offers

features to give middleboxes the ability to inject (a restricted set of) messages into the communication stream.

functionality in the network should be kept minimal while end-
hosts implement most, if not all, functionality. Thus, especially in
security contexts, the addition of middleboxes terminating end-
to-end connections is often regarded as a slippery slope toward
security and privacy loss on the Internet. In contrast to the general
Internet, limited domains [12] allow for more liberal solutions that
can be tailored to the needs of the domain. Industrial networks are
one prominent example of such a limited domain, as they are typi-
cally under a single administrative control. Additionally, all devices
follow a common goal: ensuring the successful operation of the
industrial process. Industrial networks and other limited domains
thus represent a contrasting deployment scenario compared to the
Internet, calling to revisit secure middlebox-aware communica-
tion specifically from the perspective of industrial communication.
Since current proposals for middlebox-aware end-to-end security
protocols are designed for the general Internet, we now investi-
gate to which extent existing proposals are suited for industrial
deployments. Table 1 summarizes the results of our analysis.

An initial set of proposals attempts to realize middlebox function-
ality directly on encrypted traffic [9, 36, 47, 55]. Here, BlindBox [55]
introduces the original idea but only enables the functionality to
evaluate regular expressions on encrypted data. Subsequent efforts
extend this functionality [36], improve performance by reusing
computations [47], or focus on specific use cases such as intru-
sion detection [9]. However, searchable encryption enables only a
limited set of computations on network traffic, does not support
altering or injecting traffic, and brings unacceptable performance
penalties to resource-constrained industrial devices. A similar pic-
ture is drawn by the recent first proposal to employ zero-knowledge
proofs provided by clients that attest the abidance to certain rules,
e.g., to prevent routing traffic to a blacklisted IP address [23]. Again,

this approach has significant performance drawbacks, restricted
functionality, and no support for altering or injecting traffic.

A fundamentally different idea is to encapsulate middlebox func-
tionality into TEEs to shield them againstmalicious or compromised
hosts [19, 26, 49, 56]. These approaches, such as SGX-Box [26] share
TLS session keys with the TEE.Within the TEE, packets are entirely
decrypted and can even be altered by the middlebox. Lightbox [19]
further protects traffic metadata and enables stateful middleboxes.
Shieldbox [56] facilitates the implementation of middleboxes in In-
tel SGX via the Click framework [30]. Meanwhile, SafeBricks [49]
restricts middleboxes to only partially access packets and improves
the performances of chained middleboxes. However, the access
restriction of SafeBricks does not cryptographically protect against
malicious middleboxes and relies on a correct realization of Rust’s
type system and the security of the TEE itself. Still, the limited
memory of TEEs impedes the application of these proposals even if
TEEs were available in industrial settings. Furthermore, all proto-
cols are designed for TLS, such that dropping individual messages
implies that all future sequence numbers must be adapted. More
importantly, all these approaches assume a secure implementa-
tion of the TEE primitive, which a plethora of recent attacks (e.g.,
Plundervolt [44] or Æpic leak [8]) have shown to be difficult.

Finally, recent work investigates the direct integration of middle-
boxes into TLS sessions via protocol extensions [4, 21, 37, 38, 45, 46].
In mcTLS [46], each message is assigned a preconfigured context
consisting of a unique set of middleboxes with read and/or write
access. The TLS record protocol header is then extended by a con-
text identifier and two authentication tags, one for readers and one
for writers. Readers verify the reader tags, writers verify reader
and writer tags, and endpoints verify all tags. Thus, readers can
verify that no third party modified the packet, writers know that

Madtls: Fine-grained Middlebox-aware End-to-end Security for Industrial Communication ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

any modification stem from writers, and endpoints additionally
know whether the packet has been modified at all. Still, mcTLS
only provides coarse access control on a per-message level. As an
alternative to mcTLS, maTLS [37] proposes to use different TLS ses-
sions for middleboxes and append a modification log to each packet
to track changes. Despite performance improvements in mdTLS [4],
this approach introduces significant processing delay and band-
width overhead. In turn, ME-TLS [38] improves the handshake
efficiency over that of mcTLS by providing authorized middleboxes
with the necessary information to recover session keys from pas-
sively observed handshake messages. Furthermore, mbTLS [45]
enables the dynamic integration of middleboxes into a special TLS
session where a new key is used for each middlebox to enforce
path integrity, but without restricting data access. Stealth key ex-
changes [21] take yet another route by exchanging a secondary
encryption key in standard-conform TLS 1.3 communication that
can be used to keep traffic encrypted and/or authenticated when
sharing the primary session key with a middlebox.

Overall, even these closely related protocol proposals only pro-
vide access control on a per-message basis and often introduce
significant overhead. In general, the current state-of-the-art on
middlebox-aware end-to-end security protocols cannot provide the
fine-grained access control to packets necessary to operate middle-
boxes in a least-privilege mode. Furthermore, no current proposal
covers the case of middleboxes injecting traffic, as may be neces-
sary within industrial applications to, e.g., issue emergency stop
commands [15] or reduce the latency of control tasks [15, 51, 52].
Consequently, we conclude that current middlebox-aware end-to-
end security protocols are not suited for industrial networks.

3 THREAT MODEL & REQUIREMENTS

Despite extensive research on middlebox-aware end-to-end secu-
rity, industrial networks can still not be efficiently equipped with
such functionality. Meanwhile, these networks offer a prime target
for such approaches as established middlebox deployments often
prevent other security measures. In the following, we first estab-
lish the threat model against which middlebox-aware end-to-end
security (in the industrial networks) must protect (Section 3.1). Af-
terwards, we distill concrete requirements that must be fulfilled to
enable the least-privilege operation of middleboxes (Section 3.2).

3.1 Threat Model

We strive to prevent attacks aiming at unauthorized read or write ac-
cess to communication channels in industrial networks. To achieve
this goal, we consider an attacker according to the Dolev-Yao threat
model [18], i.e., an attacker which has complete control over the
entire network (but neither of the two endpoints of a communica-
tion channel). Accordingly, the attacker can arbitrarily read, alter,
reroute, inject, and drop packets. Additionally, an attacker may
arbitrarily compromise one or multiple middleboxes which access
the communication channel. Within our threat model, the attack
must be constrained from extending their control over a commu-
nication session beyond the minimum access requirements any
compromised middleboxes have over that session. Furthermore,
an attack must be prevented from altering middleboxes’ order or
skipping some middleboxes entirely, as this may lead to incorrect

data being processed or ineffective intrusion detection. Denial of
Service (DoS) attacks and side-channels attacks are out of scope in
this paper as these kinds of attacks affect all security protocols.

3.2 Requirements

Middlebox-aware security protocols should provide the same secu-
rity guarantees as end-to-end protocols towards outsiders, i.e., enti-
ties not part of the communication. Concretely, any communication
session should authenticate the communication endpoints, provide
data secrecy, and ensure data integrity. Beyond these inherited re-
quirements, middlebox-aware end-to-end security protocols (for
industrial networks) must fulfill additional requirements regarding
the integration of middleboxes into communication sessions.

Explicit Middlebox Authentication. The authentication of end-
points in end-to-end security must be extended to all middleboxes
with read or write access to any message. Thus, both endpoints
must explicitly acknowledge and verify all middleboxes involved
in the communication and the privileges they got assigned.

Least Privilege Read and Write Access. Middleboxes are often
located at critical vantage points to process as much traffic as pos-
sible. This makes middleboxes a particularly attractive target for
attacks, while they often fulfill dedicated tasks which require read
and/or write access to specific parts of messages. Consequently,
middleboxes should operate in a least-privilege mode where they
are restricted to exactly those access rights that are inevitable to ful-
fill their task. The selection of applications from Section 2.2 shows
that this access might have to be restricted to bit-wise read and/or
write access to specific fields in a message.

Least Privilege Traffic Injection. Some middlebox tasks need
to inject control commands for low-latency control or emergency
shutdowns (Section 2.2). However, such abilities must not be ac-
companied with full control over the communication channels, i.e.,
a middlebox should not be able to inject arbitrary traffic. Instead,
privileges to inject traffic must again be restricted to the minimum
required for correct functionality, e.g., to only inject messages with
specific Modbus function codes.

Path Integrity. Generally, the order in which middleboxes pro-
cess a message is important. A middlebox performing complex
computation may, e.g., need to be placed behind a filtering middle-
box to be able to keep up at line-rate. Therefore, an attacker should
not be able to change the processing order of middleboxes, or worse,
skip certain middleboxes (e.g., an IDS) entirely. To prevent such
attacks, a middlebox-aware security protocol should enforce path
integrity, i.e., a message’s correct verification depends on it passing
all intended middleboxes in the right order.

Accounting for Resource Constraints. Middlebox-aware end-
to-end security for industrial networks has to account for resource-
constrained devices and networks. More specifically, adequate la-
tencies must be ensured even with limited processing power. Addi-
tionally, any per-message overhead for short messages should be
minimized to conserve bandwidth.

Our requirements show similarities with the traditional Inter-
net (e.g., path integrity [45]), but also a range of challenges unique
to the IIoT (e.g., least-privilege traffic injection). As the current
state-of-the-art cannot fulfill all these requirements, we propose a
middlebox-aware security protocol tailored to the IIoT.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wagner et al.

data

segment encryptsender

=
? compare to verify

authenticity

encrypt

encrypt

authenticate

authenticate

authenticate
Σ

aggregate

combine

middlebox

ΣΣ

transmit

decrypt

authenticate

extract

update authentication middlebox
processing

receiver
data

transmit

Σ
segment decrypt & combineauthenticate

authenticate

authenticate Σ

1
2 3 4

5

6

7

8

9

Figure 3: The core idea behind Madtls is to segment mes-

sages according to predetermined templates, which allows to

encrypt and authenticate each segment individually. To save

bandwidth, segment authentication is only verified by the re-

ceiver and selected middleboxes. Therefore, each middlebox

updates the authentication tag, such that later verification of

this tag ensures path integrity and data integrity at all times.

4 HIGH-LEVEL DESIGN OFMADTLS

To enable middlebox-aware end-to-end security in industrial net-
works, we propose Middlebox-Aware DTLS (short:Madtls). We
choose to integrateMadtls as extension to DTLS as it represents
the bigger challenge compared to TLS, since any message can be
lost during its transmission. However, the integration into, e.g.,
TLS 1.3 should be possible without significant changes. Madtls
is designed to fulfill the requirements for industrial networks out-
lined in Section 3.2. Still,Madtls can also be advantageous in other
scenarios such as data center networks.

The main idea underlying Madtls is to partition messages into
segments, which are then individually encrypted and authenticated
such that middleboxes can only read or write to a specific subset
of those segments. We illustrate the entire process of securing a
message before transmission, over the partial access by a middlebox,
until the final reception of the message at its destination in Figure 3.
First, 1 the sender partitions a message into non-overlapping seg-
ments such that a specific set of access rights for each middlebox
can be assigned to each segment. The resulting segments are then
2 separately encrypted (e.g., with AES in counter mode), and 3
an authentication tag is computed for each segment. Notably, the
authentication scheme for individual segments is designed such
that 4 all authentication tags for individual segments can be ag-
gregated to save valuable bandwidth. The encrypted segments and
the aggregated authentication tag are then 5 transmitted to their
destination and intercepted by a middlebox.

content
type

(1 byte)

version

(2 byte)

epoch

(2 byte)

sequence
number

(6 byte)

length

(2 byte)

encrypted
data

auth.
tag

(16 byte)

DTLS header payload

Figure 4: The DTLS 1.2 header format realizes a concise mes-

sage format that can easily be extended to support new func-

tionality through the addition of content types.

In the example in Figure 3, the middlebox has read access to the
segment in the middle (red). After 6 decrypting this segment, it
can process the contained data to realize its middlebox functionality.
Meanwhile, the middlebox also 7 updates the aggregated authen-
tication tag such that the final receiver can retrace whether this
middlebox received the correct data. Thus, the receiver can verify
that no attacker manipulated data before a middlebox processes it,
just to revert these changes afterwards.

The final receiver 8 decrypts all segments and 9 computes
an authentication tag over the received data to compare it to the
transmitted tag. If both tags match, the integrity of the transmitted
data is proven: The receiver and all middleboxes received data that
has only been modified by middleboxes that have been explicitly
allowed to make these changes. After discussingMadtls on a high
level, we now dive into the details of the record layer protocol.

5 THE MADTLS RECORD PROTOCOL

To introduce the idea of middlebox-awareness to industrial net-
works, we extend the DTLS 1.2 protocol. We start with a summary
of the DTLS 1.2 record layer layouts in Section 5.1. Then, in Sec-
tion 5.2, we discuss how we extend this layout to support limited
read and write access for middleboxes. In Section 5.3 and 5.4, we
then discuss how encryption and integrity protection are handled.
Finally, we discuss extensions to realize integrity verification by
middleboxes (Section 5.5) and limited data injection (Section 5.6).

5.1 Background: DTLS Record Layer

We first describe the DTLS record layer in Figure 4. The content
type is used to identify the type of messages (e.g., DTLS handshake
messages are represented by the type 0x16). New content types
can be added to extend the functionality of DTLS. The version
field indicates the protocol version (e.g., 1.2). Then, DTLS uses two
fields that combine to a nonce to prevent replay attacks. The epoch
tracks cipher suit changes and a zero-initialized sequence number
increments with each message. The length field then indicates the
length of the DTLS record layer payload, which is appended after-
wards. To this end, the payload is encrypted and an authenticated
tag is appended according to the chosen cipher suite. In summary,
DTLS realizes a concise message format that can easily be extended
to new functionality through new content types.

5.2 Madtls’ Record Layer Header Structure

To realize Madtls, we extend the DTLS 1.2 header by three new
content types (0x1D, 0x1E, and 0x1F). One of those new content
types (0x1E) represents the Madtls record layer. The remaining

Madtls: Fine-grained Middlebox-aware End-to-end Security for Industrial Communication ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

template id segmentation info message layout
contextlength

1

2

24

0 7 15 23 31

0
40 1
32 0

7 0
1 1
3 0

0
1
0

0

2
1 1
1 0
1 1
2 0
128 2

Figure 5: The segmentation info describes the layout of a

packet and can either be explicitly transmitted, or, for repeat-

ing patterns, the mapping between a 1-byte template id and

it can be communicated during the handshake.

header is extended by a, usually 1-byte long, segmentation info
field that defines the encrypted payload’s segmentation.

This segmentation info field starts with two 1-bit flags: The
m-flag, which is set to enable middlebox authentication (discussed
in Section 5.5), and the l-flag, which is set if the layout of the data
is explicitly indicated. If the l-flag is not set, the remaining 6 bits
form the template id that maps to one of up to 64 pre-exchanged
segmentation infos as shown in Figure 5 and explained below.

Conceptually, a plaintext Madtls message is divided into 𝑛 seg-
ments, addressed as 𝑆 [0] to 𝑆 [𝑛 − 1]. Each segment 𝑆 [·] is assigned
a context that defines which middleboxes have read or write access
to that segment. The segmentation of a message is then indicated
indirectly through the template id or by explicitly including the
segmentation info in the packet header. The segmentation info
encodes the layout where alternating fields indicate the bitlength
of segments and their assigned context. Currently, variable-length
fields result in entire segmentation info specifications, but a com-
pact formatting for such cases could be imagined in the future.

As in DTLS, the header precedes the payload that contains the
encrypted message and the integrity-protecting authentication tag
that is verified by the final receiver of a message. Crucially,Madtls’
authentication tag is updated by middleboxes to ensure data consis-
tency and path integrity. In the following, we discuss the encryption
and authentication scheme employed byMadtls in more detail.

5.3 Segment Encryption

We start by discussing the encryption scheme used by Madtls,
before diving into the more important (for industrial networks) and
challenging aspect of integrity protection. Note that encryption is
not mandatory inMadtls, which may be useful for some (indus-
trial) applications that only care about integrity-protection. When
using encryption, the use of a single key does obviously not allow
for limited read access. Therefore, each segment 𝑆 [·] is assigned a
context 𝑐 , which is associated with a unique encryption key 𝑘𝑒𝑛𝑐𝑐 .
Only those middleboxes that should read a specific context are then
provided with the corresponding key. These keys are distributed
during the handshake, as we will discuss in Section 6.

To avoid unnecessary overhead when segments are shorter than
a multiple of the block sizes of the cipher (e.g., 16 bytes for AES),
Madtls can take advantage of cipher streams as realized, e.g., by

AES in counter mode. This approach ensures that messages do not
expand through encryption of individual segments. Each segment
is then separately encrypted with the key corresponding to its
context, i.e., 𝐶 [𝑖] = 𝑒𝑛𝑐𝑘𝑒𝑛𝑐𝑐

(𝑆 [𝑖]), where 𝐶 [𝑖] is the encrypted
plaintext segment 𝑆 [𝑖]. Middleboxes and the final receiver derive
either from the template id or from the segmentation info field which
segments they have access to, where those are located, and which
keys they must use to decrypt which segment.

5.4 Compact Authentication Scheme

While Madtls’ encryption scheme is straightforward, the simi-
larly trivial approach towards integrity protection is impossible.
Madtls’s authentication scheme must differentiate individually
between read and write access to all segments. Consequently, we
cannot transfer approaches such as mcTLS’s three authentication
tags [46] to a setting with significantly more fine-granular access
control, as its authentication scheme introduces three 16-byte tags
for each context and does not protect path integrity.

Therefore, we design a custom authentication scheme forMadtls
that ensures compactness, path integrity, and high performance. To
achieve these goals, Madtls takes advantage of authentication tag
aggregation [29] to combine multiple tags into a single tag without
loss of security for a verifier that is able to verify each of the aggre-
gated tags individually. While tag aggregation has been explored
previously to achieve path integrity [20], Madtls’s authentication
scheme only needs to transmit a single tag even if messages are
modified or divided into multiple contexts. This design naturally
favors the verification of data and path integrity by the final re-
ceiver who has access to all contexts to verify all tags. In case the
receiver notices that a packet has been manipulated on its path,
it can alert the concerned middleboxes or an operator. For now,
we focus on this case and describe the design of Madtls’s single
authentication tag in the following. We later revisit this limitation
in Section 5.5 and see how Madtls supports the efficient creation
of partial authentication tags that middleboxes with limited data
access can still verify.

The gist of our authentication scheme is that each node that is
authorized to read or write data manipulates the authentication
tag in a deterministic way such that the final tag is correct iff
no unauthorized manipulation has taken place during message
transmission. The manipulation of the tag by each entity with
access rights, even those only allowed to read, ensures that no
entity receives manipulated data that is subsequently changed back
without this being noticeable by the final receiver. In the following,
we describeMadtls’ authentication scheme in detail, starting with
the key setup. Afterwards, we learn how the sender computes an
initial authentication tag and how this tag is subsequently updated
by middleboxes according to their access rights.

We have 𝑒 communication entities and 𝑐 contexts in aMadtls
session. Each segment 𝑆 [·] is mapped to a context that uniquely
describes a set of access rights for each middlebox. Entities 0 and
𝑒 − 1 are the sender and receiver, respectively. All other entities (1
to 𝑒 − 2) are middleboxes with read and/or write access to a subset
of all segments. The corresponding symmetric keys for access to
the 𝑖-th context for the 𝑗-th entity are denoted as 𝑘𝑖, 𝑗 as shown in
Figure 6. For each index, there exist up to two keys, one for read

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wagner et al.

communication entities

0 1 2 3 . . . e− 2

co
n
te
x
ts 0 kread0,0 kread0,2 . . .

1 kread1,0 kread1,1 kread1,3 . . . kread0,e−2
...

...
...

...
...

. . .
...

c− 1 kreadc−1,0 kreadc−1,3 . . .

φ

φ

Figure 6: Madtls assigns read keys to communication en-

tities according to their access rights for each context. The

same key assignment is conducted for write keys.

access (𝑘read
𝑖, 𝑗

) and one for write access (𝑘write
𝑖, 𝑗

). As shown in the
example of Figure 6, Entity 3 has read access to Context 1 such
that 𝑘read1,3 exists. As Entity 2 has no read access to this Context,
𝑘read1,2 does not exist. The sender has read and write access to all
contexts of a message. Thus, all keys 𝑘_,0 always exist. Meanwhile,
no key 𝑘_,𝑒−1 exists as the receiver does not need to authenticate
the message to another entity. To update authentication tags for the
next entity, the 𝑘-th communication entity has access to all keys
𝑘_,𝑘 that exist. To update (and verify) tags, each entity additionally
knows the previous existing key for all contexts it has access to. We
denote this previous key as 𝜑 (𝑘_,𝑘). In the example from Figure 6,
𝜑 (𝑘read0,2) = 𝑘read0,0 and 𝜑 (𝑘read1,3) = 𝑘read1,1 .

In the following, we explain how the sender uses the keys 𝑘_,0
to compute the initial authentication tag. Each entity subsequently
updates the aggregated authentication tags by removing the old
partial segment tag (i.e., the authentication tag computed only over
a segment with the corresponding read or write key) and adding a
new tag for each accessed context. As each update requires access
to a unique set of keys that only that specific middlebox knows, it
cannot be impersonated by another entity. An in-depth discussion
of the soundness and security of Madtls’ authentication scheme
can be found in the Appendix.

The initial tag is computed as follows, where 𝛿 (·) maps the
segment index 𝑖 to the corresponding context:

𝑡 =
⊕
0≤𝑖<𝑛

(
𝜎
𝑘read
𝛿 (𝑖),0

(𝐶 [𝑖]) ⊕ 𝜎𝑘write
𝛿 (𝑖),0

(𝐶 [𝑖])
)

Each segment is authenticated (𝜎 represents a classical message
authentication algorithm such as HMAC-SHA256) twice, with the
corresponding reading and writing keys, respectively. All computed
tags (i.e., reading and writing tags for all segments) are then XOR-ed
together, which does not reduce their security [6]. A verifier now
needs all keys that were used to compute the individual tags to
verify the aggregated tag. This aggregated tag is then appended to
the message and transmitted to the first middlebox with limited
read or write access to the message.

All middleboxes alter this tag according to their access rights
in a deterministic way. A middlebox 𝑗 that has read access to the
segments Sread

𝑗
updates the tag of the message as follows:

𝑡
⊕
=

⊕
𝑖∈Sread

𝑗

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖), 𝑗)
(𝐶 [𝑖]) ⊕ 𝜎

𝑘read
𝛿 (𝑖), 𝑗

(𝐶 [𝑖])
)

For each segment 𝑖 in Sread
𝑗

, the first part of the equation removes
tags from the last entity that had read access to that message seg-
ment. This removal works exactly when the segment 𝐶 [𝑖] has not
been changed between the two readers, as only then do the old
partial segment tag and the newly computed partial segment tag
cancel out. The second part of the equation then computes and
integrates a new segment tag with the new key 𝑘read

𝛿 (𝑖), 𝑗 not known
to the previous middlebox.

Besides read access, some middleboxes may also have write ac-
cess to certain segments Swrite

𝑗
. Here, we assume that write access

implies read access. Formally, this means that Sread
𝑗

∩ Swrite
𝑗

= ∅,
i.e., write access to a context cannot be combined with explicit read
access. Here, the procedure to amend the authentication tag is sim-
ilar. First, the old reading and writing tags are removed before they
are replaced by the new tag computed over the changed segment
data 𝐶 ′[·]. Formally, this procedure looks as follows:

𝑡
⊕
=

⊕
𝑖∈Swrite

𝑗

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖), 𝑗)
(𝐶 [𝑖]) ⊕ 𝜎

𝑘read
𝛿 (𝑖), 𝑗

(𝐶 ′[𝑖]) ⊕

𝜎𝜑 (𝑘write
𝛿 (𝑖), 𝑗)

(𝐶 [𝑖]) ⊕ 𝜎𝑘write
𝛿 (𝑖), 𝑗

(𝐶 ′[𝑖])
)

Finally, the receiver receives the message as well as the transmitted
and updated authentication tag 𝑡 . Based on the received data, it can
then compute 𝑡∗ as follows:

𝑡∗ =
⊕
0≤𝑖<𝑛

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖),𝑒−1)
(𝐶 [𝑖]) ⊕ 𝜎𝜑 (𝑘write

𝛿 (𝑖),𝑒−1)
(𝐶 [𝑖])

)
If no unauthorized manipulation of transmitted data took place, 𝑡
and 𝑡∗ are identical, and thus the integrity of the message is verified
successfully. Otherwise, at least one communication entity has been
served with unauthentic data.

5.5 Self-Verifying Middlebox

By default, Madtls operates in the most resource-conscious mode
where only the final receiver verifies a message. Notably, this veri-
fication not only covers the authenticity of the message as received
at the final destination but also ensures the authenticity of the mes-
sage as received by each on-path middlebox (with read or write
permission). However, further efforts are required to ensure on-
path authenticity if the processing of messages by middleboxes
causes side effects, i.e., has influences beyond the current message,
e.g., the injection of a control command.

Here, a middlebox cannot always exclusively rely on the final
receiver to authenticate a message. In some cases, optimistic pro-
cessing [59, 63] (i.e., the idea of processing a likely genuine message
with the knowledge that maliciousness is guaranteed to be detected
within a short time span) still allows offloading authentication to
the final receiver for reliable connections (e.g., TCP). But at the
very least, middleboxes with side effects that communicate over
lossy channels must authenticate the data they process themselves.
Otherwise, an attacker could manipulate a message before a mid-
dlebox processes it and prevent it from being received at its final
destination, e.g., by jamming a wireless channel.

In cases where immediate verification of authenticity is required
(e.g., for irreversible critical decisions),Madtls enables suchmiddle-
boxes to self-verify authenticity by specifically adding an additional

Madtls: Fine-grained Middlebox-aware End-to-end Security for Industrial Communication ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

16-byte authentication tag 𝑡 𝑗 for the middlebox 𝑗 . This tag 𝑡 𝑗 is com-
puted over the subset of partial tags 𝜎 relevant to the middlebox’s
access rights, such that no additional cryptographic processing is
necessary. Formally, it is computed as follows:

𝑡 𝑗 =
⊕

𝑖∈Sread
𝑗

∪Swrite
𝑗

(
𝜎
𝑘read
𝛿 (𝑖),0

(𝐶 [𝑖])
)
⊕

⊕
𝑖∈Swrite

𝑗

(
𝜎𝑘write

𝛿 (𝑖),0
(𝐶 [𝑖])

)
Like the main authentication tag 𝑡 , these tags 𝑡 𝑗 are modified by pre-
ceeding middleboxes. These modifications are, however, restricted
to the subset of contexts both middleboxes have access to, which is
communicated to the middleboxes during the handshake. For write
access, a middlebox 𝑘 would modify the tag 𝑡 𝑗 as follows:

𝑡 𝑗
⊕
=

⊕
𝑖∈Swrite

𝑗
∩Swrite

𝑘

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖),𝑘)
(𝐶 [𝑖]) ⊕ 𝜎

𝑘read
𝛿 (𝑖),𝑘

(𝐶 ′[𝑖]) ⊕

𝜎𝜑 (𝑘write
𝛿 (𝑖),𝑘)

(𝐶 [𝑖]) ⊕ 𝜎𝑘write
𝛿 (𝑖),𝑘

(𝐶 ′[𝑖])
)

Analogously, the intermediary middlebox 𝑘 only updates the read
tags if it and middlebox 𝑗 have access to a context:

𝑡 𝑗
⊕
=

⊕
𝑖∈Sread

𝑗
∩(Sread

𝑘
∪Swrite

𝑘
)

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖),𝑘)
(𝐶 [𝑖]) ⊕ 𝜎

𝑘read
𝛿 (𝑖),𝑘

(𝐶 ′[𝑖])
)

Finally, upon reception of the message by middlebox 𝑗 , this mid-
dlebox can verify the authenticity of the data it has access to by
recomputing 𝑡 𝑗 and comparing it to the transmitted tag. When for-
warding the message to the final receiver, middlebox 𝑗 removes the
tag 𝑡 𝑗 as it is no longer needed. After learning about self-verifying
middleboxes, we can now look at how Madtls enables limited
message injection as required by some industrial use cases.

5.6 Limited Message Injection Capabilities

So far, Madtls allows authorized middleboxes to read and write to
well-defined segments of transmitted messages. Still, certain indus-
trial use cases for middleboxes additionally require capabilities to
actively inject new messages, e.g., to enable low latency control of
robot arms (cf. Section 2.2). However, giving such middleboxes the
ability to inject arbitrary messages breaks the least-privilege prin-
ciple as a middlebox could take control beyond what is necessary
for its dedicated task. Consequently, Madtls needs to enforce lim-
ited injection capabilities where middleboxes can only inject those
messages relevant to its intended functionality.

Madtls realizes such limited injection capabilities through the
use of pre-defined message templates. In essence, a template is a
message with dedicated placeholders that is authenticated by the
endpoint and sent to the middlebox in advance. The middlebox
then has restricted write access to the placeholder segments of this
message before it is forwarded (e.g., to only be able to transmit
specific control commands).

However, DTLS uses nonces that are explicitly transmitted to
prevent replay attacks. Either way, for messages generated via
message templates, wemust ensure that (1) the used nonce is unique
and (2) the receiver knows and accepts the nonce. In DTLS, nonces
are a combination of a sequence number and an epoch. To not
interfere with this procedure, Madtls defines a new content type
(0x1F) to mark middlebox-injected messages. These messages use
the same encryption and authentication keys as normal messages

but start at any unique epoch in the future. This epoch should be
chosen according to how many injected messages are expected
in relation to normal messages and how many message-injecting
middleboxes exist in a given communication session.

While a middlebox with the mere task of sending emergency
stops in critical situations only needs the ability to send a few mes-
sages, a middlebox responsible for low-latency control adjustments
continuously injects a significant number of messages. As the se-
quence numbers of injected and regularly transmitted messages
(from the original sender) are decoupled, the impersonated end-
point can asynchronously provide multiple authentication tags in
advance for increasing sequence numbers of the same message
template without having to retransmit the template itself. Hence,
Madtls achieves the same fine-grained access control over injected
messages as for read and write access to existing messages.

6 THE MADTLS HANDSHAKE PROTOCOL

Madtls requires several keys to enable fine-grained access control
for middleboxes. These keys can be pre-configured or distributed ad-
hoc by a trusted party. In many cases, it is, however, beneficial if the
involved parties can agree upon these keys by themselves. There-
fore, we adapt the DTLS 1.2 handshake to additionally exchange the
keys required forMadtls to the endpoints as well as all involved
middleboxes. For simplicity, we assume that all communication
entities have pre-established shared secrets, which is often reason-
able as all entities are known in advanace and managed by a single
operator in industrial networks. To enable certificate-based au-
thentication of all entities, we can employ the ServerKeyExchange
message proposed in step 3 of the mcTLS handshake [46], which
we, however, do not require due to our pre-shared keys. Figure 7
highlights the necessary additions to the DTLS 1.2 handshake in
blue. In the following, we discuss these changes step by step.

ClientHello. The ClientHello announces the desire to es-
tablish a new communication session and proposes a set of cipher
suites. The ClientHello contains a pre-exchanged cookie to thwart
DoS attacks as per the DTLS 1.2 standard, which we do not change.
One important change is that the ClientHello message passes
through all middleboxes, which are thus informed about the new
session and may remove cipher suites from the announced list. We
extend it by the information concerning middleboxes and their ac-
cess rights. As additional information,Madtls first appends a list
of middleboxes identified by their IP address. Then, the contexts
field defines all contexts needed by that session, i.e., combinations
of read and write access for the different middleboxes. Finally, the
client appends a list of possible message templates. First, the num-
ber of templates is announced, followed by a null-byte terminated
enumeration of segmentation info fields, as introduced in Fig-
ure 5. If the receiver accepts the request and supports a requested
cipher suite, it responds with a ServerHello message.

ServerHello. The receiver responds with a ServerHello hand-
shake message, agrees on a selected cipher suite, and replays the
Madtls-specific contexts and template fields. These fields must be
replayed as the server may add more contexts or templates to it.

ServerHelloDone. The ServerHelloDone does not require any
modification as it only signals the end of the ServerHello.

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wagner et al.

Sender Middblebox 1 Middlebox 2 ReceiverClientHello||middleboxes||
contexts||templates

ClientHello||middleboxes||
contexts||templates

ClientHello||middleboxes||
contexts||templates

ServerHello||contexts|| templates
ServerHello||contexts|| templates

ServerHello||contexts|| templates
ServerHelloDone

ServerHelloDone
ServerHelloDone

ClientKeyExchange||middlebox keys ClientKeyExchange||middlebox keys ClientKeyExchange||middlebox keysChangeCipherSpec, Finished ChangeCipherSpec, Finished ChangeCipherSpec, Finished

ChangeCipherSpec, Finished
ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

Figure 7: ForMadtls, we extend the DTLS 1.2 handshake and add additional data to select messages (highlighted in blue).

ClientKeyExchange. The client then shares the final informa-
tion the server needs to derive the symmetric keys used in this
session and shares all middlebox keys 𝑘read and 𝑘write with the
respective involved middleboxes through a ClientKeyExchange
message. For this key distribution, the sender first computes a key
to encrypt and authenticate data to the respective middleboxes.
Based on secret𝑠,𝑚 shared between the sender 𝑠 and a middlebox
𝑚, these key distribution keys 𝑘𝑘𝑑 are derived as:

𝑘kd𝑚 = kdf(secret𝑠,𝑚, nonce),

where the nonce is derived from the standard DTLS handshake.
Then, the context encryption keys 𝑘enc are derived independently
of any secrets shared with a middlebox, as

kdf(secret𝑠, 𝑟, nonce, context, ‘encrypt’)

from the secret shared between sender 𝑠 and receiver 𝑟 , the nonce,
an identifier of the respective context and a unique string. Finally,
the context authentication keys 𝑘read and 𝑘write are derived as

kdf(secret𝑠,𝑟 , nonce,middlebox, context, {‘read’, ‘write’})

by including an identifier of the targeted middlebox and different
strings for read or write keys. To ensure that a middlebox only
gains access to its keys (and the respective preceding keys as given
by 𝜑 (·)), the client encrypts each middlebox’s context keys with
the respective key distribution key 𝑘kd𝑚 before appending them to
the ClientKeyExchange message. Thus, if middlebox 2 has read
access to context 1 and write access to context 3, the sender ap-
pends enc

𝑘𝑘𝑑
𝑠,2

(𝑘read2,1 | |𝑘read2,3 | |𝑘write2,3 | |𝜑 (𝑘read2,1) | |𝜑 (𝑘read2,3) | |𝜑 (𝑘write2,3)) to
the ClientKeyExchange message. The middleboxes can then de-
crypt these respective keys as the ClientKeyExchange passes. The
subsequently transmitted ChangeCipherSpec and Finished mes-
sages are not changed forMadtls.

Final Server Messages. In DTLS 1.2, the server sends a final
copy of ChangeCipherSpec and Finished messages to conclude
the handshake. This procedure is not changed by Madtls as the
receiver can compute and verify all key distribution keys that the
sender transmitted in the ClientKeyExchange message. Overall, a
Madtls session can be efficiently established, and we now look at
its performance in real-world scenarios.

7 PERFORMANCE EVALUATION

Madtls fulfills all functional requirements expected of a middlebox-
aware security protocol for industrial networks (cf. Section 3.2). To
evaluate if its performance is suitable even for resource-constrained
devices, we implemented a prototype for Contiki-NG 4.8, a popular
operating system for IoT devices, by extending the tinydtls library.

7.1 Madtls vs. the Current State-of-the-Art

First, we compare the processing latency of Madtls to related
approaches. These approaches consist of the tinydtls DTLS 1.2 im-
plementation (which offers no middlebox awareness) and a custom
mcTLS implementation1 adapted to DTLS to avoid TCP overhead.
For all protocols, we send payloads of lengths increasing from 1
to 256 bytes. Madtls uses a single write context to emulate the
same functionality as mcTLS. Our measurements run on a Zolertia
RE-Mote (CortexM3@32MHz, 32-bit CPU), a common device to
represent the constraints of industrial hardware [50, 59, 60].

Figure 9 plots the processing time against the length of the trans-
mitted payload for the different protocols. All protocols require
more processing as the payload increases. However, these increases
are discrete, marginally rising by about 0.1ms whenever the pay-
load fills up a new AES block (all 16 bytes), and more substantially
jumping by about 0.4ms when sha256 blocks of the HMAC com-
putation are filled up (all 64 bytes). Thus,Madtls is efficient even
for large messages and even achieves a noticable performance gain
against mcTLS which neither offers the same fine-grained data
access asMadtls nor ensures path integrity.

Beyond latency, reducing bandwidth usage is also imperative
for Madtls. Here, the DTLS 1.2 record protocol carries a header
overhead (including 16 bytes tags) of 30 bytes while mcTLS’s over-
head is 63 bytes. Meanwhile, Madtls only adds 1 byte to DTLS 1.2
for the template id that defines the message structure. Even for
multiple contexts,Madtls does not require more space.

Madtls is thus attractive performance-wise for industrial net-
works, even if no fine-grained data access is needed. In the case of
a single context, it saves over 22 % of processing latency (more for

1We could not source any implementations of the approaches discussed in Section 2.3
and therefore implement the closest competitor of Madtls ourselves.

Madtls: Fine-grained Middlebox-aware End-to-end Security for Industrial Communication ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

read
1
write read

2
write read

3
write read

4
write read

5
write

number and type of contexts

0

5

10

15

20

Pr
oc
es
sin

g
Ti
m
e
[m

s]

1 byte wide contexts
2 byte wide contexts
10 byte wide contexts
20 byte wide contexts

Figure 8: Madtls ’s performance scales linearly in the num-

ber of contexts, while their sizes only have marginal impact.

larger messages) and 32 bytes of header over mcTLS. Most impor-
tantly, Madtls offers this performance while offering true least-
privilege data access to middleboxes, ensuring path integrity, and
allowing least privilege traffic injection, three crucial features not
offered by mcTLS, or any other approach from related work.

Cipher Suite for Faster Processing. Madtls performs ade-
quately for many industrial applications. However, some applica-
tions require even faster processing in the sub-millisecond range.
To assess Madtls under these harsh requirements, we design a ci-
pher suite to minimize processing latency based on recent work on
preprocessed encryption and integrity protection. More concretely,
we create a cipher suite based on antedated encryption [28] and
BP-MAC [60]. Antedated encryption uses AES in counter mode
and splits it into a precomputation phase for the computationally-
intensive keystream generation and a fast online phase that only
XORs a message with the cached keystream [28]. BP-MAC, in turn,
achieves fast integrity protection for short messages by combining
precomputed authentication tags for individual bits via a Carter-
Wegman construction [60]. Using this cipher suite forMadtls on
our resource-constrained RE-Mote board, message encryption and
authentication time reduces to 624 µs (compared to 3.975ms) for
a 5-byte message with a single write context spanning the entire
message. Thus, with suitable cryptographic algorithms, Madtls is
apt for low-latency scenarios on constrained hardware.

7.2 Impact of the Size and Number of Contexts

Wemust also understand the impact of Madtls’ fine-grained access
control on its performance. Therefore, we evaluate the impact of the
number and size of contexts on the processing time. We continue
using the Zolertia RE-Mote as evaluation platform and measure
the encryption and authentication time of a 100-byte long packet.
We add 1 to 5 contexts of sizes varying between 1 and 20 bytes to
each message. We repeat our measurements 20 times and show the
results, including 99%-confidence intervals, in Figure 8.

We observe a linear growth of processing times with the number
of contexts and that write contexts require more processing than
read contexts. This scaling is expected as it is proportional to the
number of calls to HMAC-SHA256. While processing one 20-byte
read context takes 2.42ms, the same operation over a write context
lasts 4.22ms. This behavior can also be explained by the number of
HMAC-SHA256 calls, as write contexts require two calls per context
compared to the one required for read contexts. Meanwhile, the

50 100 150 200 250
Payload Length [byte]

2.5

5.0

7.5

10.0

Pr
oc
es
sin

g
Ti
m
e
[m

s]

MADTLS mcTLS DTLS

Figure 9:Madtls performs better thanmcTLS in comparable

scenarios, where middlebox write access is given for selected

messages. DTLS provides no such guarantees.

size of the contexts only has a negligible impact on the processing
time as all contexts individually fit into a single SHA256 block.

Overall, Madtls performs adequately even for scenarios requir-
ing many contexts for different middleboxes with diverse func-
tionalities. As contexts are shared if the same data is accessed by
multiple middleboxes, even complex chains of middleboxes can op-
erate in a least-privilege mode with a low number of contexts. Thus,
even resource-constrained devices, commonly seen as endpoints in
industrial networks, can employMadtls.

7.3 Madtls Across Different Hardware Classes

Middleboxes are typically more powerful as they have to process
many messages from different sources. Therefore, we use the Rasp-
berry Pi Zero (which uses the same Arm 11 chip that the Netronome
NFP-4000 Flow Processor uses for general-purpose processing) to
evaluate the performance of SmartNIC-based middleboxes without
further optimizations. Moreover, we evaluate Madtls on an AMD
EPYC 7551 server CPU. Thus, we can learn how Madtls performs
over a wide variety of CPU classes and architectures.

For our evaluation, we process 10, 50, 100, and 200 byte messages
with the middlebox accessing 80 % of a message’s data via a single
read context. The processing entails the decryption of the accessed
data and updating the authentication tag. We repeat all measure-
ments 20 times and report on the throughput with 99%-confidence
intervals in Figure 10. Across all processors, the throughput grows
significantly with longer messages as the fixed per-message over-
head mainly impacts small messages.

Our evaluation shows that if devices like the Zolertia RE-Mote
were used as a middlebox, they would still achieve a throughput
of over 66 kbit/s. The Raspberry Pi Zero more than doubles this
throughput, with a throughput between 154 and 1877 kbit/s, de-
pending on the message sizes. Expectedly, SmartNICs (as well as
programmable switches) can, however, not rely on a relatively slow
general-purpose processing core to achieve gigabit throughput.
Still, their performance can be significantly optimized with device-
specific implementations of cryptographic primitives [32, 62]. On
the other hand, our AMD EPYC 7551 processor achieves a through-
put between 20 and 249Mbits/s on a single of its 32 cores.

7.4 Madtls in the Real World

To verify Madtls’s utility in real-world use cases, we conduct
two case studies. First, we implement a middlebox that translates
between local coordinates of robot arms and global coordinates as
proposed by Kunze et al. [34]. Here,Madtls allows us to ensure that

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wagner et al.

RE-Mote Pi Zero EPYC 7551100

101

102

103

104

105

Th
ro
ug

hp
ut

[k
bi
t/
s]

10-byte messages (8-byte read contexts)
50-byte messages (36-byte read contexts)
100-byte messages (80-byte read contexts)
200-byte messages (160-byte read contexts)

Figure 10: Throughput is limited on constrained devices but

middleboxes can take advantage of more powerful hardware.

the middlebox only accesses the first six byte of a packet’s payload
where the x, y, and z coordinates are encoded in 16 bits each. The
remaining payload, containing supplementary sensor readings (e.g.,
timestamp, grip pressure, gripper rotation) in an additional 14 bytes,
cannot be written to or read by the middlebox. This data layout, e.g.,
corresponds to one observed in Modbus communications. Secondly,
we use Madtls to realize an IDS based on Snort rules. To this end,
we use the 14 Quickdraw Snort rules [2] for industrial Modbus
communication. Using Madtls, we constrain the IDS’ access to
selectively reading 3, 5, or 6 bytes per Modbus frame, depending on
the communication flow. Without restricting the IDS’ capabilities,
Madtls thus blinds over 60% of all bytes in the corresponding
Modbus test traces [2].

8 LIMITATIONS OFMADTLS

Madtls addresses many shortcomings of related work on secure
middlebox-aware (industrial) communication. These achievements
come, however, with a few drawbacks that must be considered
before deployingMadtls. First,Madtls’ handshake is significantly
more complex than the standard DTLS 1.2 handshake. While it does
not require additional round trips, more data must be exchanged
between the entities. Per se, this is not a problem in industrial
networks with relatively static connections since handshakes can
be performed in advance during non-critical periods. However, the
added complexity makes weaknesses in design and implementation
more likely and may be restrictive in some scenarios.

Secondly,Madtls needs more extensive key management and
storage than simple end-to-end communication. While this draw-
back is inevitable when multiple entities with different access rights
on a single communication channel are involved, it may impact
embedded devices with limited storage capabilities. Also, the cor-
responding key exchange protocol, as exemplified in Section 6,
becomes more error-prone in terms of design and implementation.

Thirdly, Madtls offloads integrity verification to the final re-
ceiver of a message per default. However, it must be carefully con-
sidered whether middleboxes must additionally verify the integrity
of processed data themselves. Still, Madtls offers efficiently com-
puted additional middlebox-specific authentication tags that require
no additional cryptographic processing to append to a message.

Fourthly, whileMadtls is designed with performance in mind
and even outperforms its closest competitor (mcTLS [46]), the added
processing overhead is not negligible for resource-constrained de-
vices in industrial scenarios. Fortunately,Madtls’s processing adds

minimal jitter, such that a deterministic overhead can be considered
when designing control algorithms where required [52].

Fifthly, Madtls adopts DTLS 1.2 with our building blocks to
bring middlebox-aware security to industrial communication. In
reality, the industrial landscape and beyond also uses other security
protocols (e.g., TLS) that can and should not always be replaced
with DTLS. While we see nothing preventing the adoption of other
protocols withMadtls’s features, a concrete design must still be
proposed to bring our advances to a wider variety of applications.

Sixthly,Madtls is most efficient for predictable message struc-
tures as they are often found in the IIoT. Employing Madtls on
the traditional Internet would expose it to more dynamic content
(e.g., websites). While the explicit transmission of segmentation
info enables such scenarios, the added bandwidth overhead must
be considered. Moreover, privacy implications of metadata (e.g.,
for templates) must be carefully considered in other scenarios, as
devices no longer belong to a single operator in that case.

Madtls thus mostly exhibits limitations outside the industrial
domain. However, domain-specific adaptions can alleviate some of
these constraints while benefiting fromMadtls’s main contribu-
tions: Allowing least-privilege access control on a communication
channel for middlebox processing.

9 CONCLUSION

This paper proposes Madtls, a middlebox-aware enhancement of
the DTLS protocol tailored explicitly to the IIoT. Hereby,Madtls
addresses multiple major limitations of the current state-of-the-art
on middlebox-aware security that focuses heavily on the traditional
Internet. Most importantly,Madtls allows fine-grained access con-
trol for middleboxes on a bit-level and enables middleboxes to inject
a restricted set of messages where this is desired (e.g., for emergency
shutdowns) while still operating more efficiently than mcTLS [46].

Specifically, Madtls segments messages and assigns contexts
(i.e., read and write access rights) according to the middleboxes’
needs. Each segment is encrypted and authenticated separately
without expanding the packet. Middleboxes are permitted to read
or write to specific segments and either verify integrity directly or
defer this step to the final receiver for efficiency reasons.Madtls
processes packets in only a few milliseconds on heavily constrained
hardware, while performance scales linearly with the number of
contexts and message lengths. Meanwhile, Madtls achieves up to
249Mbit/s throughput on a single AMD EPYC 7551 core, enabling
middleboxes to process many different communication streams.

Madtls thus brings middlebox-aware security to the IIoT to
solve the dilemma where middleboxes become increasingly popular
and thus prevent secure end-to-end communication.

ACKNOWLEDGMENTS

We would like to thank René Glebke and our anonymous reviewers
for their valuable feedback. This paper was supported by the EDA
Cyber R&T project CERERE, funded by Italy and Germany. Funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC-2023
Internet of Production – 390621612. The authors are responsible
for the contents of this work.

Madtls: Fine-grained Middlebox-aware End-to-end Security for Industrial Communication ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

REFERENCES

[1] [n. d.]. Arrowhead, Ahead of the Future. http://www.arrowhead.eu. Last
Accessed: 22-11-2023.

[2] [n. d.]. Quickdraw Snort Ruleset. https://github.com/digitalbond/Quickdraw-
Snort/blob/master/modbus.rules. Last Accessed: 22-11-2023.

[3] [n. d.]. Snort. https://www.snort.org/. Last Accessed: 22-11-2023.
[4] Taehyun Ahn, Jiwon Kwak, and Seungjoo Kim. 2023. mdTLS: How to Make

middlebox-aware TLS more efficient?. In Proceedings of the International Confer-
ence on Information Security and Cryptology (ICISC’23).

[5] Tejasvi Alladi, Vinay Chamola, and Sherali Zeadally. 2020. Industrial Control
Systems: Cyberattack Trends and Countermeasures. Computer Communications
155 (2020).

[6] Mihir Bellare, Roch Guérin, and Phillip Rogaway. 1995. XORMACs: NewMethods
forMessage Authentication Using Finite Pseudorandom Functions. In 15th Annual
International Cryptology Conference (Crypto’95).

[7] Dan Boneh and Victor Shoup. 2020. AGraduate Course in Applied Cryptography.
[8] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss, and

Michael Schwarz. 2022. ÆPIC Leak: Architecturally Leaking Uninitialized Data
from the Microarchitecture. In USENIX Security Symposium.

[9] Sébastien Canard, Aïda Diop, Nizar Kheir, Marie Paindavoine, and Mohamed Sabt.
2017. BlindIDS: Market-Compliant and Privacy-Friendly Intrusion Detection
System over Encrypted Traffic. In Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security (AsiaCCS’17).

[10] B. Carpenter. 1996. Architectural Principles of the Internet. RFC 1958. IETF.
[11] B. Carpenter. 2000. Internet Transparency. RFC 2775. IETF.
[12] B. Carpenter and B. Liu. 2020. Limited Domains and Internet Protocols. RFC 8799.

IETF.
[13] Marco Caselli, Emmanuele Zambon, and Frank Kargl. 2015. Sequence-aware

Intrusion Detection in Industrial Control Systems. In Proceedings of the 1st ACM
Workshop on Cyber-Physical System Security.

[14] Marco Caselli, Emmanuele Zambon, Jonathan Petit, and Frank Kargl. 2015. Mod-
elingMessage Sequences for Intrusion Detection in Industrial Control Systems. In
Proceedings of the Internation Conference on Critical Infrastructure Protection (IC-
CIP 15).

[15] Fabricio E Rodriguez Cesen, Levente Csikor, Carlos Recalde, Christian Esteve
Rothenberg, and Gergely Pongrácz. 2020. Towards Low Latency Industrial Robot
Control in Programmable Data Planes. In Conference on Network Softwariza-
tion (NetSoft’20).

[16] Markus Dahlmanns, Johannes Lohmöller, Jan Pennekamp, Jörn Bodenhausen,
Klaus Wehrle, and Martin Henze. 2022. Missed Opportunities: Measuring the Un-
tapped TLS Support in the Industrial Internet of Things. In Proceedings of the 2022
ACM on Asia Conference on Computer and Communications Security (AsiaCCS’22).

[17] Xavier de Carné de Carnavalet and Paul C. van Oorschot. 2023. A Survey and
Analysis of TLS Interception Mechanisms and Motivations: Exploring How End-
to-End TLS is Made “End-to-Me” for Web Traffic. Comput. Surveys 55, 13s (2023).

[18] D. Dolev and A. Yao. 1983. On the Security of Public Key Protocols. IEEE
Transactions on Information Theory 29, 2 (1983).

[19] Huayi Duan, Cong Wang, Xingliang Yuan, Yajin Zhou, Qian Wang, and Kui Ren.
2019. LightBox: Full-Stack Protected Stateful Middlebox at Lightning Speed. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS’19).

[20] Ertem Esiner, Utku Tefek, Daisuke Mashima, Binbin Chen, Zbigniew Kalbarczyk,
and David M Nicol. 2023. Message Authentication and Provenance Verification
for Industrial Control Systems. ACM Transactions on Cyber-Physical Systems 7, 4
(2023).

[21] Marc Fischlin. 2023. Stealth Key Exchange and Confined Access to the Record
Protocol Data in TLS 1.3. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security (CCS’23).

[22] Brendan Galloway and Gerhard P Hancke. 2012. Introduction to Industrial
Control Networks. IEEE Communications Surveys & Tutorials 15, 2 (2012).

[23] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and Michael Walfish. 2022.
Zero-Knowledge Middleboxes. In USENIX Security Symposium.

[24] Csaba Györgyi, Károly Kecskeméti, Péter Vörös, Géza Szabó, and Sándor Laki.
2021. In-network Solution for Network Traffic Reduction in Industrial Data Com-
munication. In International Conference on Network Softwarization (NetSoft’21).

[25] Csaba Györgyi, Péter Vörös, Károly Kecskeméti, Géza Szabó, and Sándor Laki.
2023. Adaptive Network Traffic Reduction on the Fly With Programmable Data
Planes. IEEE Access 11 (2023).

[26] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and Dongsu Han. 2017. SGX-Box:
Enabling Visibility on Encrypted Traffic using a Secure Middlebox Module. In
Proceedings of the First Asia-Pacific Workshop on Networking.

[27] Kevin E. Hemsley and Dr. Ronald E. Fisher. 2018. History of Industrial Control
System Cyber Incidents. (2018). https://doi.org/10.2172/1505628

[28] Jens Hiller, Martin Henze, Martin Serror, Eric Wagner, Jan Niklas Richter, and
Klaus Wehrle. 2018. Secure Low Latency Communication for Constrained Indus-
trial IoT Scenarios. In Conference on Local Computer Networks (LCN’18).

[29] Jonathan Katz and Andrew Y Lindell. 2008. Aggregate Message Authentication
Codes. In Cryptographers’ Track at the RSA Conference.

[30] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek.
2000. The Click Modular Router. Transactions on Computer Systems 18, 3 (2000).

[31] Thomas Kohler, Ruben Mayer, Frank Dürr, Marius Maaß, Sukanya Bhowmik, and
Kurt Rothermel. 2018. P4CEP: Towards In-Network Complex Event Processing.
In Proceedings of the Morning Workshop on In-Network Computing.

[32] Shaguftha Zuveria Kottur, Krishna Kadiyala, Praveen Tammana, and Rinku Shah.
2022. Implementing ChaCha Based Crypto Primitives on Programmable Smart-
NICs. In Proceedings of the ACM SIGCOMM Workshop on Formal Foundations and
Security of Programmable Network Infrastructures.

[33] Ralf Kundel, Fridolin Siegmund, Jeremias Blendin, Amr Rizk, and Boris Kolde-
hofe. 2020. P4STA: High Performance Packet Timestamping with Programmable
Packet Processors. In IEEE/IFIP Network Operations and Management Sympo-
sium (NOMS’20).

[34] Ike Kunze, René Glebke, Jan Scheiper, Matthias Bodenbenner, Robert H Schmitt,
and KlausWehrle. 2021. Investigating the Applicability of In-Network Computing
to Industrial Scenarios. In International Conference on Industrial Cyber-Physical
Systems (ICPS’21).

[35] Ike Kunze, Philipp Niemietz, Liam Tirpitz, René Glebke, Daniel Trauth, Thomas
Bergs, and Klaus Wehrle. 2021. Detecting Out-Of-Control Sensor Signals in Sheet
Metal Forming Using In-Network Computing. In Proceedings of the 2021 IEEE
International Symposium on Industrial Electronics (ISIE’21).

[36] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, and Zhi Liu.
2016. Embark: Securely Outsourcing Middleboxes to the Cloud. In 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’16).

[37] Hyunwoo Lee, Zach Smith, Junghwan Lim, Gyeongjae Choi, Selin Chun, Taejoong
Chung, and Ted Taekyoung Kwon. 2019. maTLS: How to Make TLS middlebox-
aware?. In Network and Distributed System Security Symposium (NDSS’19).

[38] Jie Li, Rongmao Chen, Jinshu Su, Xinyi Huang, and Xiaofeng Wang. 2019. ME-
TLS: Middlebox-enhanced TLS for Internet-of-Things Devices. IEEE Internet of
Things Journal 7, 2 (2019).

[39] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G Andersen, and Michael J
Freedman. 2016. Be Fast, Cheap and in Control with SwitchKV. In 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’16).

[40] Athanasios Liatifis, Panagiotis Sarigiannidis, Vasileios Argyriou, and Thomas
Lagkas. 2023. Advancing SDN from OpenFlow to P4: A Survey. Comput. Surveys
55, 9 (2023).

[41] Chih-Yuan Lin and Simin Nadjm-Tehrani. 2019. Timing Patterns and Correlations
in Spontaneous SCADA Traffic for Anomaly Detection. In Proceedings of the In-
ternational Symposium on Research in Attacks, Intrusions and Defenses (RAID’19).

[42] Michele Luvisotto, Zhibo Pang, and Dacfey Dzung. 2016. Ultra High Performance
Wireless Control for Critical Applications: Challenges and Directions. IEEE
Transactions on Industrial Informatics 13, 3 (2016).

[43] Tianle Mai, Haipeng Yao, Song Guo, and Yunjie Liu. 2020. In-Network Computing
Powered Mobile Edge: Toward High Performance Industrial IoT. IEEE Network
35, 1 (2020).

[44] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss,
and Frank Piessens. 2020. Plundervolt: Software-based Fault Injection Attacks
against Intel SGX. In Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P’20).

[45] David Naylor, Richard Li, Christos Gkantsidis, Thomas Karagiannis, and Pe-
ter Steenkiste. 2017. And Then There Were More: Secure Communication for
More Than Two Parties. In International Conference on emerging Networking
EXperiments and Technologies (CoNEXT’17).

[46] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn,
Diego R López, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez, and Peter
Steenkiste. 2015. Multi-Context TLS (mcTLS) Enabling Secure In-Network Func-
tionality in TLS. In Proceedings of the ACM Conference on Special Interest Group
on Data Communication (SIGCOMM’15).

[47] Jianting Ning, Geong Sen Poh, Jia-Ch’ng Loh, Jason Chia, and Ee-Chien Chang.
2019. PrivDPI: Privacy-Preserving Encrypted Traffic Inspection with Reusable
Obfuscated Rules. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS’19).

[48] Gennady Pekhimenko, Chuanxiong Guo, Myeongjae Jeon, Peng Huang, and
Lidong Zhou. 2018. TerseCades: Efficient Data Compression in Stream Processing.
In USENIX Annual Technical Conference (ATC’18).

[49] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2018.
SafeBricks: Shielding Network Functions in the Cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’18).

[50] Francesca Righetti, Carlo Vallati, Daniela Comola, and Giuseppe Anastasi. 2019.
Performance Measurements of IEEE 802.15. 4g Wireless Networks. In Interna-
tional Symposium on A World of Wireless, Mobile and Multimedia Networks (WoW-
MoM’19).

[51] Fabricio Rodriguez, Christian Esteve Rothenberg, and Gergely Pongrácz. 2019.
In-Network P4-based Low Latency Robot Arm Control. In Proceedings of the
15th International Conference on emerging Networking EXperiments and Technolo-
gies (CoNEXT’22).

http://www.arrowhead.eu
https://github.com/digitalbond/Quickdraw-Snort/blob/master/modbus.rules
https://github.com/digitalbond/Quickdraw-Snort/blob/master/modbus.rules
https://www.snort.org/
https://doi.org/10.2172/1505628

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Wagner et al.

[52] Jan Rüth, René Glebke, Klaus Wehrle, Vedad Causevic, and Sandra Hirche. 2018.
Towards In-Network Industrial Feedback Control. In Proceedings of the Morning
Workshop on In-Network Computing.

[53] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-Network Computation Is a Dumb Idea Whose Time Has Come.
In ACM Workshop on Hot Topics in Networks.

[54] Syahril Ramadhan Saufi, Zair Asrar Bin Ahmad, Mohd Salman Leong, and
Meng Hee Lim. 2019. Challenges and Opportunities of Deep Learning Mod-
els for Machinery Fault Detection and Diagnosis: A Review. IEEE Access 7 (2019).

[55] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2015. Blind-
box: Deep Packet Inspection over Encrypted Traffic. In Proceedings of the ACM
Conference on Special Interest Group on Data Communication (SIGCOMM’15).

[56] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhato-
tia, and Christof Fetzer. 2018. Shieldbox: Secure Middleboxes Using Shielded
Execution. In Proceedings of the Symposium on SDN Research.

[57] Mostafa Uddin, Sarit Mukherjee, Hyunseok Chang, and TV Lakshman. 2017.
SDN-based service automation for IoT. In Proceedings of the 25th International
Conference on Network Protocols (ICNP’17).

[58] Jonathan Vestin, Andreas Kassler, Sándor Laki, and Gergely Pongrácz. 2020.
Toward In-Network Event Detection and Filtering for Publish/Subscribe Com-
munication Using Programmable Data Planes. IEEE Transactions on Network and
Service Management 18, 1 (2020).

[59] Eric Wagner, Jan Bauer, and Martin Henze. 2022. Take a Bite of the Reality
Sandwich: Revisiting the Security of Progressive Message Authentication Codes.
In Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec’22).

[60] Eric Wagner, Martin Serror, KlausWehrle, and Martin Henze. 2022. BP-MAC: Fast
Authentication for Short Messages. In Proceedings of the 15th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec’22).

[61] Konrad Wolsing, Eric Wagner, Antoine Saillard, and Martin Henze. 2022. IPAL:
Breaking Up Silos of Protocol-Dependent and Domain-Specific Industrial Intru-
sion Detection Systems. In Proceedings of the 25th International Symposium on
Research in Attacks, Intrusions and Defenses (RAID’22).

[62] Sophia Yoo and Xiaoqi Chen. 2021. Secure Keyed Hashing on Programmable
Switches. In Proceedings of the ACM SIGCOMMWorkshop on Secure Programmable
Network Infrastructure.

[63] Collin Zhang, Zachary DeStefano, Arasu Arun, Joseph Bonneau, Paul Grubbs,
and Michael Walfish. 2023. Zombie: Middleboxes that Don’t Snoop. In IEEE
Symposium on Security and Privacy (S&P’23).

APPENDIX

A SOUNDNESS OF MADTLS

We first prove the soundness of Madtls’s authentication scheme,
i.e., that without malicious manipulation all valid tags are accepted.
First, we look at the case when no middlebox is included.

𝑡∗ =
⊕
0≤𝑖<𝑛

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖), 𝑗−1)
(𝑋 [𝑖]) ⊕ 𝜎𝜑 (𝑘write

𝛿 (𝑖), 𝑗−1)
(𝑋 [𝑖])

)
=

⊕
0≤𝑖<𝑛

(
𝜎
𝑘read
𝛿 (𝑖),0

(𝑋 [𝑖]) ⊕ 𝜎𝑘write
𝛿 (𝑖),0

(𝑋 [𝑖])
)

!
= 𝑡

Then, we prove by induction that the inclusion of a reading
middlebox 𝑘 as last hop before the intended receiver does transform
a valid tag 𝑡 ′ into a valid final tag 𝑡∗.

𝑡 ′ =
⊕
0≤𝑖<𝑛

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖),𝑘)
(𝑋 [𝑖]) ⊕ 𝜎𝜑 (𝑘write

𝛿 (𝑖),𝑘)
(𝑋 [𝑖])

)
read
=

⊕
0≤𝑖<𝑛

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖),𝑘)
(𝑋 [𝑖]) ⊕ 𝜎𝜑 (𝑘write

𝛿 (𝑖),𝑘)
(𝑋 [𝑖])

)
⊕⊕

𝑖∈Sread
𝑘

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖),𝑘)
(𝑋 [𝑖]) ⊕ 𝜎

𝑘read
𝛿 (𝑖),𝑘

(𝑋 [𝑖])
)

=
⊕
𝑖∉Sread

𝑘

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖),𝑘)
(𝑋 [𝑖]) ⊕ 𝜎𝜑 (𝑘write

𝛿 (𝑖),𝑘)
(𝑋 [𝑖])

)
⊕

⊕
𝑖∈Sread

𝑘

(
𝜎
𝑘read
𝛿 (𝑖),𝑘

(𝑋 [𝑖]) ⊕ 𝜎𝜑 (𝑘write
𝛿 (𝑖),𝑘)

(𝑋 [𝑖])
)

=
⊕
0≤𝑖<𝑛

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖), 𝑗−1)
(𝑋 [𝑖]) ⊕ 𝜎𝜑 (𝑘write

𝛿 (𝑖), 𝑗−1)
(𝑋 [𝑖])

)
!
= 𝑡∗

Finally, we do the same inductive proof for a writing middlebox.

𝑡 ′ =
⊕
0≤𝑖<𝑛

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖),𝑘)
(𝑋 [𝑖]) ⊕ 𝜎𝜑 (𝑘write

𝛿 (𝑖),𝑘)
(𝑋 [𝑖])

)
write
=

⊕
0≤𝑖<𝑛

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖),𝑘)
(𝑋 [𝑖]) ⊕ 𝜎𝜑 (𝑘write

𝛿 (𝑖),𝑘)
(𝑋 [𝑖])

)
⊕⊕

𝑖∈Swrite
𝑗

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖), 𝑗)
(𝑋 [𝑖]) ⊕ 𝜎

𝑘read
𝛿 (𝑖), 𝑗

(𝑋 ′[𝑖])⊕

𝜎𝜑 (𝑘write
𝛿 (𝑖), 𝑗)

(𝑋 [𝑖]) ⊕𝜎𝑘write
𝛿 (𝑖), 𝑗

(𝑋 ′[𝑖])
)

=
⊕

𝑖∉Swrite
𝑘

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖),𝑘)
(𝑋 ′[𝑖]) ⊕ 𝜎𝜑 (𝑘write

𝛿 (𝑖),𝑘)
(𝑋 ′[𝑖])

)
⊕

⊕
𝑖∈Swrite

𝑘

(
𝜎
𝑘read
𝛿 (𝑖),𝑘

(𝑋 ′[𝑖]) ⊕ 𝜎𝑘write
𝛿 (𝑖),𝑘

(𝑋 ′[𝑖])
)

=
⊕
0≤𝑖<𝑛

(
𝜎
𝜑 (𝑘read

𝛿 (𝑖), 𝑗−1)
(𝑋 ′[𝑖]) ⊕ 𝜎𝜑 (𝑘write

𝛿 (𝑖), 𝑗−1)
(𝑋 ′[𝑖])

)
!
= 𝑡∗

B SECURITY OFMADTLS

Besides the soundness of Madtls’s authentication scheme, its se-
curity is also crucial. To prove its security, we first look at the secu-
rity definition of traditional Message Authentication Code (MAC)
schemes to show that Madtls cannot be attacked by outsiders. Af-
terwards, we also prove that an insider, i.e., a middlebox authorized
to read or write some part of a packet, cannot manipulate a packet
beyond what it is authorized to do.

B.1 Security of Traditional MAC Schemes

The security of a MAC scheme Σ = (Sig,Vrfy) over (K,M,T)
is typically defined through a game between a challenger and an
adversary A [7].

Madtls: Fine-grained Middlebox-aware End-to-end Security for Industrial Communication ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Attack Game 1.

• The challenger randomly picks a key 𝑘 from K .
• The adversary queries an oracle with a message 𝑚𝑖 for a
valid tag 𝑡𝑖 , i.e., 𝑡𝑖 such that Vrfy𝑘 (𝑚𝑖 , 𝑡𝑖) returns accept.
DenoteM the set of all𝑚𝑖 queried by A.

• Eventually, A outputs a candidate forgery (𝑚, 𝑡) ∈ M × T ,
with𝑚 ∉ M.

A wins the above game if Vrfy𝑘 (𝑚, 𝑡) returns accept. We define
A’s advantage with respect to Σ, denoted as AdvA [Σ], as the prob-
ability that A wins the game. A MAC scheme is considered secure
if the advantage of all efficient adversaries A with respect to Σ is
negligable, i.e., AdvA [Σ] = 𝑃𝑟 [A wins Attack Game 1 for Σ] < 𝜖 .

B.2 Madtls is Secure Against Outsiders

Our proof is built upon the fact that AdvB [Σ⊕] ≤ AdvA [Σ], where
a tag 𝑡 by Σ⊕ is computed as 𝑡 = Σ(𝑋 [1]) ⊕ · · · ⊕ Σ(𝑋 [𝑛]), with
𝑚 = 𝑋 [1] | | . . . | |𝑋 [𝑛]. We first adapt Attack Game 1 to prove the
security of a MAC scheme that allows the manipulation (of selected
parts) of the message by authorized middleboxes.

Attack Game 2.

• The challenger randomly picks a key 𝑘 from K .
• The adversary queries an oracle with a segment 𝑋𝑖 [·] for a
valid partial tag 𝑡𝑖 [·], i.e., 𝑡𝑖 [·] such that VrfyΣ

𝑘
(𝑋𝑖 [·], 𝑡𝑖 [·])

returns accept. DenoteM the set of all𝑚𝑖 that can be com-
posed of partial messages queried by A.

• Eventually, A outputs a candidate forgery (𝑚, 𝑡) ∈ M × T ,
with𝑚 ∉ M.

In Attack Game 2, the adversary is strictly more powerful than
in Attack Game 1, as they can query partial authentication tags, but
still (over multiple queries) learn the tag over every specificmessage.
Thus, Madtls is secure against outsider attacks if an adversary A
cannot win Attack Game 2 with a non-negligible probability.

Still, the advantage of A to win Attack Game 2 for Σ⊕ remains
negligible: For every𝑚 ∉ M, there exists at least one𝑚𝑖 for which 𝑡𝑖
was not queried by A. Thus, AdvB [Σ⊕] can be at most AdvA [Σ],
as otherwise A could learn 𝑡𝑖 for 𝑋𝑖 [·] which were not queried, i.e.,
AdvB [Σ⊕] ≤ AdvA [Σ]. Consequently, Madtls’s authentication
scheme is secure as long as the underlying MAC scheme is secure
and the tags 𝑡𝑖 computed for different message segments 𝑋𝑖 [·] are
independent.

B.3 Madtls is Secure Against Insiders

We established thus far that only authorized writers can alter (seg-
ments of) messages such that they are successfully verified by
the receiver. However, we have not considered the possibility of
ephemeral changes by malicious actors, i.e., the temporary altering
of a message for only one or a few middleboxes’ processing, before
the message is altered back to a message accepted by the final re-
ceiver. To validate that such an attack is not possible, we have to
take a deeper look at how a message’s authentication tag changes
over time.

When middlebox 𝑗 accesses a segment, it alters the authentica-
tion tag in a deterministic way: 𝑡 ⊕𝜎𝜑 (𝑘_, 𝑗) (𝑋 [·]) ⊕𝜎𝑘_, 𝑗 (𝑋 [·]). The
partial tags from the last accessing entity are first removed from

the aggregated tag, before new partial tags is added by the current
entity. This process might be done once or twice, depending on
whether the accessing middlebox is only reading or also writing.

Consequently, if an attacker maliciously changes the message
segment 𝑋 ′[·], they must be able to compute 𝜎𝜑 (𝑘_, 𝑗) (𝑋 ′[·]) and
𝜎𝑘_, 𝑗 (𝑋 ′[·]) in order to remove the consequences of their attack
from the authentication tag. It is, however, precisely the middle-
box 𝑗 doing these computations that has access to the required
keys (besides the endpoints of the communication channel). The
next middleboxes accessing that specific segment may compute
𝜎𝑘_, 𝑗 (𝑋 ′[·]) for the attacker if the message has not been changed
back yet. However, then 𝜎𝜑−1 (𝑘_, 𝑗) (𝑋

′[·]) needs to be intercepted
by the attacker. In the end, the attacker needs to compute two par-
tial authentication tags to ephemerally change a message in an
unauthorized way. Thus, the collusion of at least two middleboxes
having read access to a specific message segment is required for an
attack that introduces ephemeral changes. Hence, no single actor,
external or internal, can attackMadtls’s authentication scheme.

	Abstract
	1 Introduction
	2 Middleboxes in Industrial Networks
	2.1 Security Challenges in Industrial Networks
	2.2 Diversity of Industrial Middlebox Use Cases
	2.3 Prior Work on Middlebox-aware Security

	3 Threat Model & Requirements
	3.1 Threat Model
	3.2 Requirements

	4 High-level Design of Madtls
	5 The Madtls Record Protocol
	5.1 Background: DTLS Record Layer
	5.2 Madtls' Record Layer Header Structure
	5.3 Segment Encryption
	5.4 Compact Authentication Scheme
	5.5 Self-Verifying Middlebox
	5.6 Limited Message Injection Capabilities

	6 The Madtls Handshake Protocol
	7 Performance Evaluation
	7.1 Madtls vs. the Current State-of-the-Art
	7.2 Impact of the Size and Number of Contexts
	7.3 Madtls Across Different Hardware Classes
	7.4 Madtls in the Real World

	8 Limitations of Madtls
	9 Conclusion
	Acknowledgments
	References
	A Soundness of Madtls
	B Security of Madtls
	B.1 Security of Traditional MAC Schemes
	B.2 Madtls is Secure Against Outsiders
	B.3 Madtls is Secure Against Insiders

