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Abstract
Cyberattacks have grown into a major risk for organizations,
with common consequences being data theft, sabotage, and
extortion. Since preventive measures do not suffice to repel at-
tacks, timely detection of successful intruders is crucial to stop
them from reaching their final goals. For this purpose, many
organizations utilize Security Information and Event Man-
agement (SIEM) systems to centrally collect security-related
events and scan them for attack indicators using expert-written
detection rules. However, as we show by analyzing a set of
widespread SIEM detection rules, adversaries can evade al-
most half of them easily, allowing them to perform common
malicious actions within an enterprise network without being
detected. To remedy these critical detection blind spots, we
propose the idea of adaptive misuse detection, which utilizes
machine learning to compare incoming events to SIEM rules
on the one hand and known-benign events on the other hand to
discover successful evasions. Based on this idea, we present
AMIDES, an open-source proof-of-concept adaptive misuse
detection system. Using four weeks of SIEM events from
a large enterprise network and more than 500 hand-crafted
evasions, we show that AMIDES successfully detects a ma-
jority of these evasions without any false alerts. In addition,
AMIDES eases alert analysis by assessing which rules were
evaded. Its computational efficiency qualifies AMIDES for
real-world operation and hence enables organizations to sig-
nificantly reduce detection blind spots with moderate effort.

1 Introduction

Enterprise networks increasingly face severe cyberat-
tacks [27], e.g., illustrated by the 2020 SolarWinds hack affect-
ing thousands of companies and government agencies [26].
Besides considerable efforts to roll out preventive measures,
enterprises additionally depend on threat detection to uncover
successful adversaries breaching their line of defense [38]. For
this purpose, many enterprises utilize Security Information
and Event Management (SIEM) systems to collect and au-
tomatically analyze large numbers of security-related events

(e.g., user authentications, program executions, network con-
nections, and file manipulations) from endpoints and network
appliances. To discover potential intruders from these events,
organizations predominantly rely on expert-written SIEM
rulesets [1, 9, 53]. Such rulesets implement the concept of
misuse detection (also called rule-based or signature-based
detection), i.e., they contain definitions of known malicious
behavior. The main reasons to rely on misuse detection are
its effectiveness in finding known attacks, simplicity of op-
eration, and ability to ease investigation by providing alert
details such as name and description of detected attacks [47].

However, these advantages come at the cost of potential de-
tection blind spots, as rules typically fail to cover all possible
variations of an attack. Adversaries may thus evade detec-
tion either by purposefully modifying attacks or inadvertently
performing attacks in a subtly different way. These detection
blind spots are particularly dangerous when using publicly
available rulesets, e.g., the widespread Sigma rules [51]: Due
to public availability, adversaries can test attacks against rules
and, in case of detection, modify them to evade any matches,
thereby reducing the risk of being detected. This issue of rule
evasions is well known in related fields [15, 31, 44, 62], but
has not been studied for SIEM rules until now.

In this paper, we show that widespread SIEM rules are
indeed prone to evasions and present a novel method to de-
tect such evasions with few or even no false alerts. For this
purpose, we first analyze 292 publicly available and widely
used SIEM rules, showing that at least 44 % of them can be
evaded using straightforward techniques, thus creating critical
detection blind spots. To remedy this situation, we introduce
adaptive misuse detection, which is an extension of (con-
ventional) misuse detection that aims to detect SIEM rule
evasions and otherwise undetected variants of known attacks
in addition to (conventional) rule matches. This is achieved
by comparing incoming events to SIEM rules on the one hand
and known-benign events on the other hand and deciding
which of the two categories they are more similar to. Beyond
that, if a potential evasion has been identified, adaptive mis-
use detection assesses which rule(s) were attempted to evade.



This rule attribution aims to ease alert investigation for secu-
rity analysts by showing them potentially attempted attacks,
similarly to conventional rule matches.

As a proof-of-concept implementation of adaptive mis-
use detection, we present AMIDES, an open-source Adaptive
Misuse Detection System, which detects activity that is simi-
lar to known attacks, yet does not trigger the respective SIEM
rules (i.e., evasions). AMIDES is based on supervised learn-
ing from SIEM rules versus benign events, allowing it to
classify new events depending on their similarity either to
known-malicious or known-benign activity. Notably, by learn-
ing from existing SIEM rules, we overcome a common issue
of supervised learning, namely, the necessity to manually cre-
ate a comprehensive set of attacks for the training process. For
each potential evasion, AMIDES suggests a list of SIEM rules
that an adversary likely attempted to evade (rule attribution).

We evaluate AMIDES using four weeks of SIEM events
from an enterprise network with more than 50 000 users and
512 manually generated evasions. Our evaluation focuses on
the most prevalent rule type in our SIEM ruleset (i.e., rules
targeting malicious Windows process creations), but we also
show that AMIDES is applicable to other rule types as well.

At its default sensitivity, AMIDES successfully detects a
majority of our crafted evasions (70 %) without any false
alerts, despite a realistically unbalanced validation dataset
with ~145 000 times as many benign as malicious events. We
also show that our approach of learning from SIEM rules
is a better choice for practical application as compared to
a conventional supervised approach that learns from attack
events instead. Finally, we show that AMIDES is fast enough
for operation in large enterprise networks and still performs
reasonably in case of training data tainted with evasions.

In summary, to overcome the inherent problem of detection
blind spots of SIEM rules while preserving the wished-for
advantages of misuse detection, our contributions are:

• We perform an analysis of almost 300 widespread open-
source SIEM rules and show that approximately half of
them can be evaded with minor effort, thus enabling adver-
saries to potentially avoid detection (Section 3).

• We propose the concept of adaptive misuse detection, an
extension of misuse detection that aims to detect SIEM
rule evasions and undetected variants of known attacks by
classifying events based on their similarity to either SIEM
rules or historical benign events (Section 4).

• We design and implement AMIDES, an open-source, proof-
of-concept adaptive misuse detection system for practical
application in enterprise networks (Section 5).

• We evaluate AMIDES using data from a large enterprise net-
work, showing its ability to detect a majority of our crafted
SIEM rule evasions with zero false alerts and a compu-
tational performance that allows for real-world operation
even in very large networks (Section 6).

2 Background: Detection of Cyberattacks in
Enterprise Networks

Cybercriminals, state-sponsored groups, and other cyberat-
tackers are causing vast damage by infiltrating enterprise
networks and subsequently conducting data theft, espionage,
and sabotage [10, 60]. Among the victims are companies, au-
thorities, and military institutions from all over the world [63].
Experience shows that purely preventive measures (such as
timely patching, restrictive access control, and raised user
awareness) are not sufficient to thwart all attacks [38]. Sooner
or later, attackers usually succeed in finding a vulnerability
they can exploit (be it technical or social), allowing them to
gain a foothold in the network for subsequent operations [20].
Consequently, organizations need to establish comprehen-
sive capabilities for detecting adversarial activity in their net-
works [64]. These capabilities are crucial as detection is a
prerequisite for reaction, i.e., stopping an attack, analyzing its
impact, and attributing it to an adversary [61].

However, detecting adversarial activity in enterprise net-
works is a challenging task due to the sheer amount and noisi-
ness of potential attack indicators [1]. Traditional sources of
such indicators include alerts from firewalls, network-based
intrusion detection systems, and anti-virus software [9]. Yet,
since adversaries and malware increasingly make use of en-
cryption and obfuscation techniques to evade traditional de-
tection, more and more behavioral data need to be collected
from endpoints, i.e., client and server computers [13]. Such
behavioral data comprise low-level events such as process
creations, network connections, and file manipulations, all of
which are valuable indicators of malicious activity despite
their large volume [6]. To make sense of this vast amount
of data, organizations utilize Security Information and Event
Management (SIEM) systems, which centrally collect, store,
and analyze all security-related data [9]. SIEM systems usu-
ally collect data from log files or logging daemons/agents
on the source systems, mostly in Syslog and Windows Event
Log format. Since their volume renders manual inspection
impossible, SIEM systems need to automatically analyze the
data for threats [1]. In case a potential threat is found, an alert
is generated and needs to be sifted by human analysts, usually
in the context of a security operations center [61].

The predominant method used by operational SIEM sys-
tems to automatically detect malicious activity is misuse
detection (also called rule-based or signature-based detec-
tion) [1, 9, 53]. Misuse detection applies a set of rules written
by security experts to each collected event (or correlations
thereof). Each rule contains one or more signatures, which
describe conditions that trigger the rule (e.g., a regular ex-
pression matching a certain event field). In addition, each
rule usually has an expressive title, a description, and option-
ally references to further information on the respective attack.
Some SIEM systems also utilize anomaly detection in addi-
tion to misuse detection [9]. However, experience shows that



this method often produces prohibitive numbers of false alerts
(cf. Section 5). Hence, misuse detection is currently the prime
means for detecting cyberattacks in enterprise networks [1].

Still, misuse detection is not a silver bullet. Research in the
related fields of network-based and host-based intrusion de-
tection as well as malware detection has shown that rules can
often be evaded, i.e., attacks can be performed successfully
without triggering a rule by slightly modifying the attack, e.g.,
by inserting dummy characters into malicious strings to avoid
matching a signature [15, 31, 44, 62]. Common reasons for
evadable rules are that (1) the rule author tailored the rule to
a concrete attack and did not anticipate all possible variations
and obfuscations and (2) matching all possible variations and
obfuscations would make the rule (or the underlying analysis
engine) too complex or computationally infeasible. Therefore,
evasions are a fundamental and inherent problem of misuse
detection, which leads to detection blind spots, i.e., attacks
may remain undetected despite appropriate rules being de-
ployed [15]. Note that an evasion can either be purposeful (i.e,
an attacker anticipates that a certain rule is deployed and delib-
erately evades it) or incidentally (i.e., an attacker unknowingly
performs an undetected attack variant, e.g., by executing a
command line with slightly different arguments than covered
by the respective rule). For brevity, in the remainder of this
paper, we subsume both kinds under the term evasion, thereby
meaning a purposeful or incidental evasion of a SIEM rule,
including undetected variants of known attacks.

To the best of our knowledge, there is no research yet that
analyzes SIEM rules for potential evasions. Possibly this is
due to the fact that there has been no large public corpus of
SIEM rules for a long time. However, this changed signifi-
cantly with the advent of Sigma, which is a generic and open
signature format for SIEM systems [51]. In the last few years,
following the general trend of open-source information secu-
rity [33], Sigma has become a highly active project with a
large number of contributors [41,51]. While this trend enables
organizations to make use of a large corpus of comprehensive
and up-to-date SIEM rules, it also bares the risk of purposeful
evasions in case an adversary correctly assumes that public
Sigma rules are being used by a potential victim.

In the following, we will show that Sigma rules are indeed
prone to evasions and thus measures for evasion detection are
required to reduce critical detection blind spots in enterprises.

3 Analysis of SIEM Rules for Evasions

To lay the foundation for our work, we analyze a represen-
tative set of SIEM rules with respect to potential evasions.
For this purpose, we chose a subset of Sigma rules, which are
probably the most widely used corpus of open-source SIEM
rules at the moment. In the following, we give a short introduc-
tion to Sigma, describe our analysis goals and methodology,
and finally present our findings, showing that evasions indeed
induce significant detection blind spots.

Introduction to Sigma Rules Sigma is a generic and open
signature format for SIEM systems. It allows for flexible rules
in YAML format that can detect malicious or suspicious be-
havior in any type of text-based log data. Sigma rules can
be automatically converted to queries for common SIEM
products (e.g., Splunk or Elasticsearch). Aside from these
conversion tools and Sigma’s specification, its GitHub reposi-
tory [51] contains a large corpus of detection rules, which are
continuously revised and extended by a large community. Ac-
cording to the Open Source Security Index, the Sigma project
is among the most popular and fastest growing open source se-
curity projects on GitHub (sixth place overall, highest ranked
project with detection focus as of January 2023) [41]. In our
professional experience, Sigma rules are widely used by orga-
nizations in practice.

Analysis Goal and Methodology The goal of our analysis
was to quantify the risk of detection blind spots for existing
Sigma rules by finding concrete evasions for them. We had
to restrict our analysis to a subset of rules from the Sigma
repository due to the high effort of manual analysis and the
fact that some types of rules act on log data of software or
hardware that is not generally available (e.g., commercial
cloud services or appliances). We thus chose to analyze the
subset of rules that act on process creation events on Win-
dows systems. This rule type is the most frequent (making
up 41 % of all rules at the time of analysis) and does not
depend on log data from proprietary products except for Win-
dows. Furthermore, process creation events are known to be a
valuable source for threat detection [6]. They comprise infor-
mation on newly created processes and are generated either
by Windows itself [57] or by the tool Sysmon [46, 56]. The
contained fields most often searched by the Sigma process
creation rules are CommandLine (the full command line of the
process creation; 45 % of all search expressions in the consid-
ered rules), Image (the full path of the executed image; 29 %
of search expressions), and ParentImage (the full path of the
parent process image; 10 % of search expressions). There are
~20 more fields that are searched by only a few rules, e.g.,
Description, ParentCommandLine, and User.

The analysis was conducted as follows. We analyzed all
process creation rules that were contained in the Sigma repos-
itory on February 4, 2021 (commit ID 12054544). First, we
reviewed each rule in detail, including potential references
given within the rule (e.g., threat reports describing the ma-
licious behavior that should be detected by the rule). Next,
we tried to re-enact the malicious process creation as de-
scribed by the rule on a Windows 10 system (e.g., by running
powershell.exe /C Clear-EventLog System). We man-
ually reviewed the Windows event log to verify our commands
and then ran scripts to check for Sigma rules matching these
events. In case we succeeded to match the current rule, we
then tried to find command lines that perform the exact same
action, but without matching the rule (i.e., evasions).



Table 1: Almost half of the analyzed SIEM rules (129 of 292) can be evaded using the five straightforward evasion types presented
in this table (each with one concrete example), thus causing critical detection blind spots in enterprise networks.

Evasion type Sample affected rule Affected search term Sample match Sample evasion

Insertion win_susp_schtask_creation * /create * schtasks.exe /create ... schtasks.exe /"create" ...
Substitution win_susp_curl_download -O curl -O http://... curl --remote-name http://...
Omission win_mal_adwind *cscript.exe *Retrive*.vbs * cscript.exe ...\Retrive.vbs cscript ...\Retrive.vbs
Reordering win_susp_procdump * -ma ls* procdump -ma ls procdump ls -ma
Recoding win_vul_java_remote_dbg *address=127.0.0.1* ...address=127.0.0.1,... ...address=2130706433,...

For this to work, we assumed that an attacker who can
create a process with command line arguments is also able
to alter these arguments (e.g., curl.exe --remote-name
example.com instead of curl.exe -O example.com). We
made sure that successful evasions did not match any addi-
tional Sigma rules (i.e., rules not triggered by the original
match). Finally, we assigned one of four labels to each rule:
(1) full if we were able to completely evade the rule, (2) partial
if the rule contains OR-branches of which we could evade at
least one, but not all, (3) none if we could not find an evasion,
and (4) broken if we found the rule to be faulty.

Analysis Results Of the 292 analyzed Sigma rules, we
found that 110 (38 %) can be fully evaded and 19 (7 %) can be
partially evaded. For another 51 rules (17 %), we found that
evasion might be possible but could not confirm any concrete
evasion instances either due to unavailable target software
(mostly malware) or excessive effort for conclusive analysis.

We achieved all evasions by adapting the processes creation
command line in multiple ways. For this purpose, we found a
total of five evasion types during our analysis as exemplified
in Table 1: (1) Insertion of ignored characters into the com-
mand line (e.g., double quotes or spaces), (2) substitution of
synonymous characters or arguments (e.g., a hyphen instead
of a slash before an argument), (3) omission of unnecessary
characters (e.g., shortening arguments), (4) reordering of ar-
guments, and (5) recoding of arguments. We created at least
three matching and three evading events for each evadable
rule to achieve variability, ending up with 461 matches and
512 evasions in total, which were later used in the context of
our evaluation (cf. Section 6). Summarizing, we were able to
evade almost half of the rules, each with multiple variants.

We would like to emphasize that generally our results come
as no real surprise and are not necessarily specific to the ana-
lyzed Sigma rules. Instead, evasions are an intrinsic problem
of misuse detection due to the impracticality of covering every
possible mutation with hard-coded signatures (cf. Section 2).
This makes it practically impossible to “fix” the affected rules
in the sense of adapting them to detect all possible evasions.
However, a subsidiary result of our analysis is that we found
12 of the 292 rules to be broken, i.e., failing to detect what
was intended by the rule author. We excluded these rules from
our evasion analysis. Furthermore, we provided fixes to the

Sigma maintainers for all broken rules that had not yet been
fixed or removed by the Sigma community in the meantime,
resulting in four rules that were fixed through our feedback.

In conclusion, we find that the risk of detection blind spots
through rule evasions is indeed high for the analyzed Sigma
rules, which are widely used in practice. Even small attack
mutations using simple techniques suffice to evade detection.
Consequently, adversaries might remain undetected despite
performing commonly known attacks. In the following, we
therefore present our main idea, adaptive misuse detection,
which aims to solve this dilemma of easily-evadable rules by
classifying incoming SIEM events based on their similarity
to SIEM rules versus historical benign events.

4 The Case for Adaptive Misuse Detection

The results of our analysis lead to the question of how the
discovered detection blind spots can be remedied. Therefore,
we propose adaptive misuse detection, a novel methodology
to significantly reduce blind spots by detecting rule evasions
in addition to conventional rule matches. The components
of our methodology are depicted in Figure 1 and described
in the remainder of this section, followed by a conceptual
comparison with related detection approaches.

Adaptive Misuse Detection (Training)Adaptive Misuse Detection (Operation)

Conventional
Misuse Detection

Feature
Extraction

Misuse
Classification

Rule
Attribution

Live Events

Rule
Matching

Alerts

Current
SIEM Ruleset  

Historical
Benign Events  

Feature
Extraction

Misuse
Classification

Rule
Attribution

   Classification
Model

  Attribution
Model

Figure 1: Our concept of adaptive misuse detection extends
conventional misuse detection by components that aim to
detect rule evasions and attack variants. For this purpose,
classifiers are trained on SIEM rules versus benign events.



Rule Matching First of all, adaptive misuse detection is
an extension of (conventional) misuse detection with addi-
tional machine learning components (described below). In
other words, conventional rule matching is still performed
and matching rules still trigger alerts. This is because the
machine learning components are only applied to a subset
of incoming events where evasion detection is sensible (cf.
Section 5). Hence, adaptive misuse detection executes rule
matching and the machine learning components in parallel
and then merges the resulting alerts. This design ensures that
no attack is missed that conventional misuse detection would
discover, yet in addition evasions can be detected (which are,
by definition, missed by conventional misuse detection).

Rationale for Evasion Detection Adaptive misuse detec-
tion is based on the assumption that SIEM events of successful
evasions are still very similar to those of the original attack.
In our experience, an analyst can often quickly spot an eva-
sion when reviewing the respective event. This is because
the SIEM events that are predominantly used for attack de-
tection (i.e., endpoint events, cf. Section 2) are captured at
kernel level, immediately before or after the respective action
is executed by the operating system. At this level, most obfus-
cations (as often seen in malware binaries or scripts [5,11,12])
must already be resolved, else the operating system would
not be able to execute the desired action. For example, in
the case of a malicious process execution, the executable
name (e.g., powershell) ultimately has to be passed to the
operating system in plaintext for execution. The same holds
for command line parameters of executed processes (e.g.,
set-executionpolicy unrestricted), which ultimately
need to be parsed by the started process, thereby restricting
the set of possible evasions in the captured SIEM events.

As a consequence, a promising approach for evasion de-
tection is to look for events that are similar to one or more
signatures contained in the ruleset. However, there is an impor-
tant constraint, which is the avoidance of false alerts: Large
enterprise networks often deal with millions or billions of
SIEM events per day [9] and typically, only a small number
of analysts handle security alerts generated by multiple secu-
rity systems [18]. Many analysts report to be overwhelmed
by false alerts, impairing their ability to discover actual at-
tacks [1, 18]. Since the number of benign events is usually
several orders of magnitude larger than the number of attack-
related events [7], a practical approach thus requires an ex-
tremely small false positive rate. Consequently, when aiming
to detect evasions based on their similarity to rules, it is crucial
to avoid an overly broad definition of similarity.

Misuse Classification To unite these conflicting require-
ments of detecting as many evasions as possible while at the
same time keeping false alerts low, we propose a machine
learning based approach for finding potential evasions, i.e.,
events that are similar to SIEM rules but do not match them.

More precisely, we propose to apply supervised learning to
classify whether a new event is more similar to deployed
SIEM rules or to historical benign events. In other words, we
propose to train classifiers with features extracted from SIEM
rules versus features extracted from benign events, both taken
from the network where the system will be operated. We call
this step misuse classification. To the best of our knowledge,
this approach has not been studied before (cf. Section 8).

Notably, the idea of learning from already-existing rules
overcomes a common issue of supervised learning, namely,
the necessity to create a comprehensive set of attacks for the
training process. Instead, the knowledge of what is malicious
is taken from the ruleset, which – in case of Sigma – is pub-
licly available, comprehensive, and regularly updated by a
large community. We decided to call our approach adaptive
misuse detection since it adapts to the target environment
by training against its benign activity, thereby adjusting its
features and sensitivity to properly distinguish attacks from
benign events. Moreover, the approach allows to adjust its
sensitivity (better detection rate or less false alerts), which is
important in practice because the number of acceptable (false)
alerts depends strongly on the number and workload of avail-
able analysts. Overall, misuse classification aims to enable a
pinpoint detection of evasions while minimizing false alerts.

Rule Attribution A substantial reason for the popularity
of (conventional) misuse detection is that each rule contains
an expressive title, description, and possibly references to
further information, which greatly eases alert investigation.
Technically, we can say that each alert is attributed to one
or more rules. This advantage is lacked by many machine
learning based systems, which often generate alerts containing
no further information on the potential attack [53].

Since adaptive misuse detection learns from SIEM rules
(versus benign events), information on which features rep-
resent which rule is available during training. Consequently,
when a potential evasion is detected by the misuse classifica-
tion step, adaptive misuse detection allows to perform a fur-
ther step that we call rule attribution: Even though an evasion,
by definition, does not match any rule, we can still compare a
potential evasion to all SIEM rules and thus estimate which
rule(s) an adversary probably evaded. For example, when a
command line is executed that is very “similar” to a signature
of some rule (e.g., differing only in one parameter – see Sec-
tion 5 for details), the respective rule should be proposed to
the analyst within the alert as potentially being evaded.

Note that depending on the concrete evasion, there can be
several rule candidates due to overlapping or redundant con-
tents. Therefore, the rule attribution does not just output the
most likely evaded rule but a ranked list of potentially evaded
rules, which is then added to the alert to ease investigation.
Even though the rule attribution is inevitably uncertain, it may
still significantly help analysts to verify if an alert is true and
better understand the context of an attack.



Table 2: Enhancements of adaptive misuse detection over conventional misuse detection
Misuse Detection Adaptive Misuse Detection

Goal Detect known malicious behavior Additionally detect rule evasions and attack variants

Rationale Malicious behavior is explicitly defined, everything
else is considered benign.

Behavior is additionally classified by its similarity to known
malicious versus known benign behavior.

Method Matching of expert-written rules Additional classifiers trained on rules versus benign events
Customization Addition, removal, or customization of rules Additional adjustment of sensitivity
Alert details Matching rule(s) name, ID, and further attack details Identical for rule matches; estimate for potentially evaded rules

The idea of adaptive misuse detection and its differences
to (conventional) misuse detection are summarized in Table 2.
The training process will be further described in Section 5.

Conceptual Comparison to Related Detection Approaches
Adaptive misuse detection has some properties that make it
very promising for real-world application. Compared to con-
ventional misuse detection, its obvious benefit is the ability to
detect evasions. This benefit comes at the expense of a higher
operational and computational effort: Benign events must
be extracted from the target network first to then perform
the training. This training should be repeated when SIEM
rules change or when the benign behavior changes signifi-
cantly. However, as most organizations already utilize conven-
tional misuse detection, adaptive misuse detection constitutes
a straightforward way to reduce detection blind spots.

Adaptive misuse detection also shares conceptual proper-
ties with anomaly detection, in the sense that historic events
are used for training the system. However, while anomaly
detection methods learn from unlabeled, historic events only
to then detect everything that is not normal [47], adaptive mis-
use detection leverages comprehensive and ever-growing rule-
sets (such as Sigma) of known-malicious behavior. Anomaly
detection systems, on the other hand, are built on the assump-
tion that attacks correspond to anomalous behavior in the
trained model and benign activity corresponds to normal be-
havior [23]. This assumption has repeatedly been questioned
and criticized [23, 53]: Since anomaly detection systems have
no knowledge about what is malicious, they tend to produce
an unacceptable number of false alerts in real-world applica-
tions, thus causing threat alert fatigue that can lead to missed
attacks [1, 18, 25]. Even worse, they can also miss actual at-
tacks because they are not necessarily being recognized as
anomalous [23]. Furthermore, (adaptive) misuse detection has
the significant advantage of providing alert details such as the
relevant rule’s name and description, whereas anomaly detec-
tion only reports that something unusual has happened [47].
This makes root cause analysis much harder, especially in
large networks with many users and systems.

Another approach to detect malicious events is conven-
tional supervised learning in the sense that a classifier is
trained on malicious versus benign events. The problem with
this approach is its dependence on a comprehensive, realistic,

and up-to-date set of malicious events (i.e., logged attacks).
Experience shows that such data are extremely difficult and
labor-intense to create and maintain [55], thus casting doubt
on the practical utility of this approach [53]. Adaptive misuse
detection avoids this issue by utilizing community-maintained
SIEM rules as malicious samples, which are inherently com-
prehensive, realistic, and up-to-date.

Finally, there is the idea of synthetic signature generation,
i.e., similar signatures are automatically created from existing
ones to detect variants of known attacks [52]. The systematic
problem with this approach is that it may result in prohibitive
numbers of false alerts since there is no tuning process to
automatically adjust sensitivity to a concrete environment.
Adaptive misuse detection avoids this problem by training
against benign data from the concrete environment to auto-
matically find sensible features and decision thresholds.

In conclusion, our discussion indicates that adaptive misuse
detection is a promising approach for detecting SIEM rule
evasions in enterprise networks, thus reducing critical detec-
tion blind spots. Yet, it remains to show that its theoretical
benefits can be transferred to practical application.

5 AMIDES: Effective and Efficient Detection
of SIEM Rule Evasions

To verify the practical applicability and benefits of adaptive
misuse detection, we designed and implemented AMIDES,
a proof-of-concept Adaptive Misuse Detection System. Our
main goals are (1) the detection of as many evasions as pos-
sible (effectiveness) and (2) false positive rates and resource
requirements that are both low enough for real-world opera-
tion of the system in large enterprise networks (efficiency). In
the following, we give a brief overview of the system and then
describe its principal components in detail, finishing with a
consideration of the computational performance.

Overview AMIDES is a proof-of-concept implementation
of adaptive misuse detection, as proposed in Section 4. It is
meant to extend conventional misuse detection components of
SIEM systems in enterprise networks. As described, this im-
plies that conventional rule matching will still be performed
while additional machine learning components aim to detect
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Figure 2: AMIDES is a proof-of-concept adaptive misuse detection system aiming to detect attacks that evade SIEM rules as well
as otherwise undetected attack variants in addition to conventional SIEM rule matches. It learns from SIEM rules on the one hand
and historical benign events on the other hand and can thus even estimate which SIEM rule an adversary attempted to evade.

rule evasions. Figure 2 shows an overview of AMIDES, in-
cluding exemplary input data for both training and operation.
AMIDES is trained using the current SIEM ruleset and histori-
cal benign events of an organization. The training should be
repeated when either the SIEM ruleset or the benign activity
change significantly (e.g., due to major software changes).

During operation, incoming SIEM events are passed to the
rule matching component (as for conventional misuse detec-
tion) and the feature extraction component, which generates a
feature vector from the event that is suited for the subsequent
components. This vector is first passed to the misuse classifica-
tion component, which classifies the event as either malicious
or benign. If classified as malicious, the feature vector is also
passed to the rule attribution component, which generates a
ranked list of rules potentially evaded by the event. Finally,
potential alerts of the rule matching and machine learning
components are merged by the alert generation component to
create one single alert per malicious event.

Since we limited our detailed Sigma analysis (cf. Section 3)
to Windows process creation rules due to the high manual
effort of creating evasions, we also focused on this rule/event
type during the design of AMIDES (e.g., influencing its feature
engineering). However, AMIDES is also applicable to other
types: While our evaluation focuses on process creations (cf.
Section 6), we also prototypically evaluated three additional
Sigma rule types that we found to be inherently evadable,
namely, those addressing web requests, Windows registry
changes, and PowerShell scripting (cf. Section 6.3).

AMIDES is designed and implemented with performance
in mind for application in large enterprise networks (cf. Sec-
tion 6.3). We implemented AMIDES in Python, with principal
third-party packages being sklearn and numpy. AMIDES is
freely available under the GPLv3 license [3]. In the following,
we describe the system in more detail.

Input Data and Feature Extraction According to our con-
cept of adaptive misuse detection, AMIDES requires a SIEM
ruleset and a set of benign events for the training process.
Since we assume that organizations adopting AMIDES are
already using conventional misuse detection (cf. Section 2),
they can simply use their current SIEM ruleset with AMIDES.
For now, AMIDES only supports Sigma rules, but other for-
mats such as Splunk could be added in the future. In addition,
AMIDES also requires a set of benign events for the training
process. Since organizations store large numbers of events
in their SIEM systems anyway (usually for a few days up
to several years), the required events can be obtained by ex-
tracting the latest few days or weeks from the SIEM system.
Ideally, these events should not contain any attacks. How-
ever, in practice, the data might be tainted with undetected
attacks (including evasions), which we consider in our evalu-
ation (cf. Section 6.3). We thus recommend to sift the benign
dataset before training and only update it when required.

Features are extracted from SIEM events using established
methods to obtain an appropriate input vector for the machine
learning components (cf. Figure 2): First, relevant fields (here:
CommandLine) are extracted and specific characters are re-
moved that can be used to evade signatures (regex ["’^‘´]).
The resulting string is split by non-word characters (regex \W),
yielding a sequence of terms. Then, a pruning step is applied
to remove likely irrelevant terms such as timestamps and
unique IDs (more precisely: decimal and hexadecimal num-
bers over three digits as well as strings over 30 characters).
Finally, the term sequence is transformed into a weighted nu-
meric vector using tf–idf [49], thereby assigning higher values
to rarely occurring terms. The calculated idf values are stored
for later use during the operation phase, in which the exact
same feature extraction is applied to live events. For further
discussion on our implementation choices see Appendix A.



The feature extraction from Sigma rules is more complex.
Each rule contains at least one signature, consisting of
one or more search identifiers, coupled by logical condi-
tions, where each search identifier can contain required
keys, values, and modifiers such as endswith. An exem-
plary signature is Image|endswith: "\schtasks.exe"
AND CommandLine: "* /create *" AND NOT User:
"NT AUTHORITY\SYSTEM". For now, AMIDES performs a
simplified signature parsing that extracts from a rule all
strings being searched for in an event’s command line, as
long as they are not part of an exclusion (i.e., within a NOT
branch of a signature). While this implementation does not
cover Sigma’s full potential, it suffices to capture the essence
of most process creation rules, as shown by our evaluation
(cf. Section 6). After extraction, the search strings are
processed by the feature extraction component in the same
way as the command lines from SIEM events (cf. Figure 2).

Misuse Classification and Rule Attribution AMIDES im-
plements the two machine learning components proposed in
our adaptive misuse detection concept, namely, misuse classi-
fication and rule attribution. The former decides if an incom-
ing event is malicious or benign whereas the latter enriches
an evasion alert with a ranked list of SIEM rules that were
likely evaded by the event (cf. Section 4). The misuse classifi-
cation component consists of a supervised binary classifier,
which is trained with all feature vectors extracted from the
SIEM rules (labeled as malicious) versus all feature vectors
extracted from the benign events (labeled as benign). Dur-
ing training, AMIDES calculates a sensible decision threshold
range and maps it to [0,1] to allow for intuitive configuration
of its sensitivity even by non-expert users, with 0.5 being the
default value (see Appendix A for more details).

The second machine learning component, i.e., rule attribu-
tion, consists of multiple supervised binary classifiers, more
precisely, one per SIEM rule of the supplied ruleset. Each
classifier is trained with the feature vectors extracted from
the respective rule (labeled as malicious) versus all benign
events (labeled as benign). During operation, for each incom-
ing event classified as malicious by the misuse classification
component, the rule attribution runs all its classifiers and cre-
ates a ranked list of classifier confidence values. The more
similar a rule is to the event, the higher is its confidence value
and the higher it appears in the list. By default, the top 10 rules
are shown to allow analysts a comprehensive investigation
without overwhelming them with likely irrelevant rules.

On a technical level, we utilize support vector machines
(SVMs) [17] as classifiers for both misuse classification and
rule attribution since they are well suited for our highly im-
balanced datasets [54] of high-dimensional, sparse feature
vectors [29]. Training and hyperparameter tuning are per-
formed using established methods, i.e., grid search with strat-
ified 5-fold cross validation, optimizing for F1 score. Our
implementation choices are further discussed in Appendix A.

Rule Matching and Alert Generation The rule matching
component performs the task of conventional misuse detec-
tion, i.e., matching incoming events against the chosen SIEM
ruleset. As described in Section 4, this component comple-
ments the machine learning components, since the latter focus
on specific SIEM event types that are prone to evasions (e.g.,
process creation events). Technically, we utilize the open-
source log processor Logprep [37] for Sigma rule matching.

The subsequent alert generation component simply merges
alerts of the rule matching component and the machine learn-
ing components into just one alert per event. Consequently,
an alert can contain none, one, or multiple rule matches as
well as none or one evasion alert, in this case including the
top 10 most likely evaded rules (cf. Figure 2).

Performance Considerations A detection system is point-
less if its performance requirements are infeasible under real-
world conditions. Hence, AMIDES implements several mea-
sures to enable high event throughput. In particular, we as-
sume that the number of benign events in operation is orders
of magnitude larger than the number of attack-related events
and thus optimize for high benign event throughput. In addi-
tion, since many users in an organization often perform the
same tasks (e.g., opening a browser), the fraction of unique
actions is usually quite small (cf. Section 6). Therefore, we
implement an in-memory cache to avoid repeated classifica-
tion of already-seen feature vectors. The cache size is config-
urable and AMIDES periodically outputs performance metrics
to monitor cache utilization and efficiency (hits and misses).
All results of the misuse classification and rule attribution
steps are added to the cache along with the associated feature
vector, thus alerts can be reproduced from the cache instead
of repeating the costlier classification steps.

Secondly, the pruning step of the feature extraction further
reduces the number of unique command lines because it re-
moves variable, yet irrelevant parameters such as unique IDs
from otherwise frequent command lines, thus making caching
more efficient. Thirdly, since the rule attribution step requires
to run one classifier per rule per event whereas the misuse
classification step only involves one classifier in total per
event, the rule attribution is only executed if an event is clas-
sified as malicious by the misuse classification step. Lastly,
we implemented performance optimizations for the training
phase as well. For example, AMIDES deduplicates benign
feature vectors before training, which greatly reduces SVM
training time without impairing classification performance.
Furthermore, instead of performing an SVM parameter op-
timization for each rule attribution classifier, we inherit the
optimized parameters from the misuse classifier, since its
training set is a superset of the rule attribution training sets.

Without such optimizations, operation in large enterprise
networks would likely be infeasible. To show that AMIDES
can handle realistic event volumes, we present performance
measurements as part of our evaluation in the following.



6 Evaluation

AMIDES aims to significantly reduce detection blind spots
in enterprise networks by automatically detecting SIEM rule
evasions. However, good detection performance alone is not
sufficient to be beneficial under real-world conditions. In this
section, we measure key properties of AMIDES to evaluate
its overall practical value. More precisely, we subdivide our
evaluation into three research questions (RQ) of interest:

RQ1: How well does AMIDES detect SIEM rule evasions?
To address this question, we apply AMIDES to a realistic
dataset, quantify true and false classifications, and present a
practical interpretation of the results. Moreover, we compare
it to a benchmark approach that is trained with attack events
instead of SIEM rules against the same benign events.

RQ2: How accurate is the rule attribution? While RQ1
focuses on binary detection performance (i.e., whether an alert
is raised or not), AMIDES additionally suggests SIEM rules
that might have been evaded by an adversary. We evaluate
the accuracy of this rule attribution by comparing its output
against ground truth data, i.e., we check if the truly evaded rule
is suggested and how high it is ranked within the suggestions.

RQ3: Is AMIDES suited for real-world operation? Practi-
cal operation induces requirements beyond good classification
and attribution performance. We analyze three important as-
pects: First, we assess if AMIDES’ training and operation are
fast enough for typical enterprise event volumes. Secondly,
we check if AMIDES still performs reasonably under tainted
training data that inadvertently contain evasions. Thirdly, we
evaluate AMIDES’ generalizability to different event types.

Answering the three research questions requires realistic
data to evaluate against, which we describe in the following.

Datasets and Ethical Considerations To the best of our
knowledge, there exists no dataset yet that contains SIEM
events with rule evasions or undetected attack variants. We
thus decided to create an own dataset. For this purpose, we
had the opportunity to collect SIEM events from a large enter-
prise network with more than 50 000 users. The data comprise
four weeks of process creation events from May 2022, col-
lected from Windows machines running a remote-controlled
browser system and associated applications (such as PDF and
image viewers) for all users of the enterprise. In total, we col-
lected 155 373 027 events, containing 266 unique executable
filenames. We processed the data only within the premises of
the enterprise and only exported evaluation results. All user
names were already pseudonymized. We carefully sifted the
events to make sure they do not contain any attacks. Thus, we
use them as benign events in the course of our evaluation. For
further details on the dataset collection and analysis process,
see the supplementary document in our code repository [3].

Since the dataset cannot be shared with the research com-
munity due to security and privacy concerns, we created an
additional set of benign events using the open-source testbed

SOCBED [55], thus enabling researchers and potential users
to test AMIDES. However, in this paper we solely present
results for the enterprise dataset since the benign events of
the testbed dataset are synthetically generated by a simple
user emulation and therefore not as realistic. Results for the
synthetic dataset are available with the AMIDES code to facil-
itate reproducibility [3]. Our set of evasions will not be made
freely available due to ethical concerns, but can be shared
with other researchers upon personal request.

Next, we describe how we utilize the enterprise dataset and
our evasions for training and validating AMIDES.

Training and Validation For the purpose of our evaluation,
we first trained AMIDES with a set of benign events versus a
set of SIEM rules as described in Section 5. Then, to simulate
live operation and validate AMIDES’ detection performance,
we provided AMIDES with a disjoint set of benign events
versus a set of events containing evasions. We used Weeks 1
and 2 of the enterprise dataset for training and Weeks 3 and 4
for validation, which is more realistic than a randomized par-
titioning since in real-world operation, the training is always
performed on historic data and detection is then performed
on future events. As SIEM rules (training) and evasion events
(validation), we used the Sigma process creation rules and the
evasion events that we crafted for these rules as described in
Section 3, respectively. Note that the resulting training and
validation datasets are highly imbalanced on purpose to reflect
realistic ratios of benign activity to attacks [1].

Since our validation dataset is semi-synthetic (because the
evasion events were created in a testbed environment), we
need to make sure that AMIDES cannot inadvertently learn
from artifacts of the dataset generation process. (Note that we
could not generate the evasions within the enterprise network
due to security concerns.) Therefore, in the course of our
evaluation we decided to solely use the CommandLine field as
input to AMIDES’ feature extraction, since other fields could
indicate whether an event stems from the enterprise network
(and is thus benign). For example, computer names differ
between benign and evasion events, so the model could utilize
them for classification, which would be a form of unwanted
data snooping [4]. Since all of our evasions are based on
command line manipulations (cf. Section 3), restricting the
input to this field still enables AMIDES to detect all evasions.
In practice, more fields could be used if deemed useful for
further improving the detection performance.

In the following, we present the results of our measure-
ments concerning AMIDES’ training and validation process.

6.1 AMIDES Detects Most SIEM Rule Evasions
without Any False Alerts (RQ1)

To answer the first research question, we now present and dis-
cuss AMIDES’ classification results. Afterwards, we compare
these results to those of a benchmark approach.
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Figure 3: AMIDES detects most SIEM rule evasions (70 %)
with zero false alerts at default sensitivity (0.5), thus signifi-
cantly reducing detection blind spots in enterprise networks.
It keeps up with an (impractical) benchmark trained on attack
events, showing the eligibility of learning from SIEM rules.

Classification Performance In the following, we present
results for AMIDES’ misuse classification step. Since its sen-
sitivity is configurable, we start with results for the default
threshold and then discuss the influence of threshold changes.

In absolute numbers, AMIDES detected 358 events contain-
ing evasions (true positives) and missed 154 (false negatives),
so 70 % of our evasions were successfully detected. AMIDES
correctly ignored 74 431 740 benign events (true negatives)
and raised zero false alerts (false positives). Hence, AMIDES
clearly fulfills our classification goals (cf. Section 5), namely,
detecting many evasions (that would otherwise remain unde-
tected) without overwhelming analysts with false alerts. It
thus achieves a significant reduction of detection blind spots
as revealed by our SIEM rule analysis. Notably, the false pos-
itive rate (i.e., fraction of incorrectly detected benign events)
is zero despite the realistically unbalanced validation set with
~145 000 times as many benign as malicious events.

In case false alerts are acceptable in exchange for a higher
detection rate, AMIDES’ sensitivity can be adapted, which is
visualized in Figure 3. (Note that the “benchmark” graph will
be described later.) The figure shows the recall (i.e., ratio of
detected evasions to all evasions) and precision (i.e., ratio of
true alerts to all alerts) with respect to the decision thresh-
old, along with the common classifier evaluation metrics F1
score and Matthew’s correlation coefficient (MCC) [16] (both
semi-transparent). Note that AMIDES automatically selects a
sensible threshold range and maps it to [0,1] to ease configu-
ration for non-expert users (cf. Appendix A).

We can see in Figure 3 that the recall slowly declines
when the threshold increases whereas the precision sharply
increases around 0.5. The latter is caused by the extreme
imbalance of the dataset because a slightly increasing false
positive rate quickly leads to a large number of false alerts
(cf. Appendix B for an extended discussion). Therefore, most
users will probably choose thresholds near the default value
to avoid significant numbers of false alerts without sacrificing
too many detected evasions. In practice, since an organization

does not know the true number of attempted evasions, they
should therefore set the threshold to a value that produces
an acceptable number of false positives with respect to their
analysts’ resources. For example, a detection rate of 75 %
could be achieved on our dataset by selecting a lower thresh-
old so that approximately one in ten alerts is a true evasion.
In this context, please also note that we would end up with
significantly higher detection rates (at still few false alerts)
if we had chosen a more balanced (but hence less realistic)
dataset, since the precision curve would decline much slower.

Now that we quantified AMIDES’ classification perfor-
mance, we will aim to improve the intuition on these results
by comparing them with a benchmark approach.

Comparison with Benchmark Approach To the best of
our knowledge, there is no related work on SIEM rule evasion
detection, thus we cannot directly compare AMIDES to related
methods (cf. Section 8). However, since we created all of our
evasions from formerly detected attack events (i.e., matches)
in the course of our Sigma rule analysis (cf. Section 3), we can
compare AMIDES with a supervised classifier that learns from
these matches versus benign events (whereas AMIDES learns
from SIEM rules versus benign events). The rationale behind
this comparison is to find out if SIEM rules might be missing
information that is contained in the actual attack events, which
would result in an inferior detection performance of AMIDES
as compared to this benchmark approach.

To perform this comparison, we repeated AMIDES’ training
but instead of SIEM rules we used our matches as malicious
samples. As shown in Figure 3, learning from these matches
gave us similar results to those of AMIDES. At the default
threshold, which corresponds to the highest possible recall
without false alerts, both approaches perform almost identi-
cally (70 % detection rate), indicating that the information
contained in SIEM rules is equally suited for evasion detection
as the information contained in malicious events triggering
these rules. However, we deem the benchmark approach to be
unrealistic in practice because it requires to manually create
attack events for each SIEM rule, which is a tedious task and
thus unlikely to be carried out whenever SIEM rules change
(cf. Section 4). We are thus convinced that AMIDES is a better
choice for practical application in enterprise networks.

Next, we go beyond mere binary classification and assess
AMIDES’ rule attribution component. For this purpose, we
evaluate whether AMIDES succeeds in identifying the evaded
SIEM rules when provided with evasions.

6.2 Rule Attribution Helps Making Sense of
Evasion Alerts (RQ2)

Rule attribution is a unique feature of our adaptive misuse
detection approach. For each potential evasion (as detected by
the misuse classification), AMIDES suggests a ranked list of
SIEM rules that were potentially evaded (cf. Section 4). Since
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Figure 4: For each evasion alert, AMIDES outputs a ranked
list of likely evaded SIEM rules (rule attribution). Evaluated
with our manually created evasions, the truly evaded rule is
within the top 10 propositions for 95 % of the evasions.

we created at least three evasions for each evadable Sigma
rule within the scope of our rule analysis, we can use these as
ground truth, i.e., we know for each evasion which rule was
evaded. If the rule attribution worked perfectly, the evaded
rule would be the highest-ranked for each evasion.

We evaluated this expectation by applying the rule attribu-
tion to all detected evasions from the misuse classification
step. For each evasion, we checked the resulting rank of the
true evaded rule. The results are visualized in Figure 4. The
bars show a stack plot of the rank of the true evaded rules.
Ideally, all of these rules would appear in the first position.
We can see that this is the case at least for a large fraction of
the evasions (63 %). The blue curve shows the accumulated
results, allowing to check the share of true rules that are con-
tained in the top n results. Particularly, a vast majority of the
true rules (95 %) are contained within the top 10. This result
indicates that the rule attribution largely succeeds in helping
analysts to find out which rules were evaded.

Finally, after studying AMIDES’ performance in terms of
classification and rule attribution, it remains to show that
operation in an enterprise network is indeed feasible.

6.3 AMIDES Is Fit for Application (RQ3)
To show that AMIDES is well-suited for operation in an en-
terprise network, we evaluate three further aspects. First, we
show that AMIDES is computationally efficient enough to
handle enterprise-level throughput on commodity hardware.
Secondly, we examine the influence of evasions inadvertently
contained in benign training data, showing that detection per-
formance degrades gracefully. Thirdly, we show that AMIDES
and the general concept of adaptive misuse detection are not
restricted to Windows process creations but are also applica-
ble to other rule and event types.

Computational Performance To find out if AMIDES is ef-
ficient enough for practical application, we measured the time
required for training as well as the event throughput during

operation. Both measurements were taken on a commodity
Linux server with 40 physical CPU cores (80 virtual), 384 GiB
RAM, and a single SSD drive. The training was performed as
described in Section 5 and the beginning of this section, i.e.,
using two weeks of benign events (80 940 832 events) and
the Sigma rules described in Section 3. It took 42 minutes
on average (n = 10, µ = 2506 s, σ = 112 s), which allows for
daily (re)training if desired. However, most organizations will
probably not update their SIEM rules that often, so a weekly
training (or even less) probably suffices in most cases.

To measure the throughput during operation, we let
AMIDES process our whole dataset (i.e., four weeks of be-
nign process creation events and 512 evasions, yielding
155 373 539 events in total). AMIDES required 0.0763 ms per
event on average (σ = 3.19 ms) on a single core, correspond-
ing to 13 102 events per second. The overall processing took
994 s on average (n = 10, σ = 16.4 s) on all cores, including
reading the events from disk and storing them back to disk
after adding the classification results and metrics. The overall
throughput on this server is thus 156 311 events per second.
The peak number of (process creation) events per second in
our dataset is 473, therefore AMIDES is 330 times faster than
required for live operation. Much larger networks might re-
quire scaling up to multiple servers, which is straightforward
because both training and operation can be parallelized.

Influence of Tainted Training Data Next, we consider the
case that supposedly benign training data inadvertently con-
tain evasions, which might arise when data from a productive
network are used for training without careful review. The
purpose of this experiment is to find out how much detec-
tion performance degrades in this case, thereby verifying that
AMIDES is still useful if some missed evasions end up in the
training data. Since we could not find any reliable data on the
prevalence of SIEM rule evasions in the wild, we added three
different fractions (10-30 %) of our evasions to the benign
training set (and accordingly removed them from the valida-
tion set). The largest fraction (30 %) represents a scenario
where AMIDES is already running during the data collection
period, detecting 70 % of evasions (cf. Section 6.1) and no
manual review is performed at all, thus leaving 30 % of the
attempted evasions in the benign training data.

We performed training and validation in the same way as
described before, executing 10 runs per fraction with pseudo-
randomly sampled evasions. The results are depicted in Fig-
ure 5, showing all runs as semi-transparent lines and their
respective means as opaque lines. As expected, since AMIDES
is based on two-class supervised learning, detection perfor-
mance decreases with an increasing fraction of tainted data.
These measurements support our intuition that it is indeed
advisable to manually check the benign data for potential eva-
sions prior to training. However, AMIDES still detects many
evasions without false alerts, thus succeeding to significantly
reduce detection blind spots even under heavily tainted data.
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Figure 5: We added different fractions of our evasions to
the benign training data to simulate heavy tainting with un-
detected evasions. As expected, classification performance
significantly declines but still many evasions are detected.

Applicability to Other Rule and Event Types Our quanti-
tative analysis of SIEM rules for evasions as well as our pre-
vious evaluation steps are based on one type of Sigma rules,
namely, those acting on Windows process creation events (as
argued in Section 3). While this rule/event type is the most
prevalent in the Sigma ruleset (292 out of 707 rules at the
time of analysis) and highly prone to evasion (cf. Section 3),
we also looked through all other Sigma rules and found that
at least some of them can be evaded in similar ways. Due
to the high effort of manual rule analysis, we could not an-
alyze all of them in detail to achieve statistically significant
results, but still succeeded to find three prototypical evasions
for rules acting on three fundamentally different event types,
respectively: (1) web requests (47 rules in total), (2) Win-
dows registry changes (40 rules), and (3) PowerShell script
executions (25 rules). Examples are given in Table 3.

To demonstrate that our concept of adaptive misuse de-
tection and particularly AMIDES are applicable to other rule
and event types than process creation, we evaluated AMIDES
against each of the three aforementioned types. For this pur-
pose, we utilized synthetic benign events from the testbed
SOCBED [55] since we did not have access to events of these
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Figure 6: AMIDES correctly classifies three additional datasets
(each comprising synthetic benign events from a testbed and
three prototypical evasions), indicating its applicability to
other rule and event types than Windows process creation.

types from the enterprise network. Training and validation
were performed in exactly the same way as for the process
creation rules/events, only exchanging the utilized rule and
event fields with respect to the event type (see Table 4 for
details). AMIDES achieved perfect misuse classification per-
formance (i.e., no missed evasions or false alerts) on all three
types, as shown in Figure 6. Furthermore, the rule attribution
correctly ranked the evaded rules highest for each type. While
these results are not statistically significant due to the small
number of evasions and the synthetically generated benign
events (having limited quantity and variability), they still indi-
cate that adaptive misuse detection and particularly AMIDES
are applicable to diverse rule and event types.

Overall, our evaluation has illustrated the feasibility of
learning from SIEM rules versus benign events for the pur-
pose of SIEM rule evasion detection, as proposed by our
concept of adaptive misuse detection. We have shown that
the benefits remain even under real-world constraints involv-
ing limited analyst resources, high event volumes, and tainted
training data. Our proof-of-concept implementation, AMIDES,
therefore significantly reduces detection blind spots as re-
vealed by our analysis of widespread SIEM rules.

Table 3: The Sigma ruleset contains evadable rules for other event types than process creation. Three examples are shown here.
Event type Sample affected rule Affected search term Sample evasion

Web request proxy_ios_implant */list/suc?name=* http://.../list//suc?name=foo
Registry change susp_run_key_img_folder *C:\Windows\Temp\* %%windir%%\Temp\foo.exe
PowerShell clear_powershell_history ... -HistorySaveStyle SaveNothing $foo="SaveNothing"; ... -HistorySaveStyle $foo

Table 4: We prototypically evaluated AMIDES on the three additional rule/event types shown here to assess its generalizability.
Event type Event provider and IDs Event fields Sigma rule fields

Web request All Packetbeat events containing url.full url.full c-uri*, cs-uri*, cs-host, r-dns
Registry change Microsoft-Windows-Sysmon IDs 12-14 winlog.event_data.TargetObject, ...Details TargetObject, Details
PowerShell Microsoft-Windows-PowerShell ID 4104 powershell.file.script_block_text ScriptBlockText, Message



7 Discussion and Limitations

In the following, we discuss the overall impact of our work
as well as limitations of our concept and implementation.

To begin with, despite analyzing almost 300 widespread
SIEM rules in detail, our work cannot draw a comprehensive
picture of the detection blind spots arising from evadable
rules in enterprise networks. Further work is needed to ana-
lyze additional sources and types of SIEM rules. Still, we
showed that evasions pose a significant threat and organiza-
tions should strive to detect them, e.g., by using AMIDES.

Next, we reflect on our main idea to train a classifier on
SIEM rules versus benign events. Inherently, our approach
can only detect evasions if (1) they manifest themselves
in SIEM events and (2) these events are more similar to
rule signatures than to benign events (with respect to the
extracted features). Therefore, our approach cannot detect
fundamentally different classes of evasion attacks such as
(undetected) code injection into benign processes [8].

Furthermore, since we deal with an adversarial classifica-
tion task here, attackers could try to evade AMIDES itself,
which is theoretically possible in two ways. First, by tainting
the training data though a large number of evasions over a
long time. We deem this to be unrealistic because AMIDES
would likely detect these evasions and they could thus be ex-
cluded from the training set. Only when training for the first
time, care should be taken to avoid a significant number of
evasions in the benign data (cf. Section 6.3). Secondly, attack-
ers could try to craft evasions that get classified as benign,
e.g., by adding terms to malicious command lines that appear
frequently in benign events but not in rules, while preserving
a functioning command. While we deem this attack to be
difficult in practice because attackers only have one shot to
avoid detection, it should be studied in future work to account
for the ongoing rat race between attackers and defenders.

From a similar perspective, our approach is not meant
to detect completely novel attack types but otherwise un-
detected instances of attacks with already existing detection
rules. To detect unknown attack types as well, adaptive mis-
use detection could be complemented with anomaly detection.
However, the latter may produce large numbers of false alerts
and its ability to detect unknown attacks is arguable [23, 53].
Hence, organizations should consider and evaluate whether
additional anomaly detection is beneficial to them.

Shifting the focus away from the basic concept, some as-
pects of our implementation leave room for future im-
provements. In this work, we focus on Windows process cre-
ation events, particularly their command line field. While we
prototypically evaluated three additional event types, future
work could assess these and others in more detail to further
reduce potential detection blind spots. Moreover, AMIDES
does not yet support the full Sigma specification. For example,
it correctly handles NOT statements within signatures, but does
not yet support other statements such as 1 of them.

Finally, we discuss the cost-benefit ratio for organiza-
tions extending a conventional misuse detection system with
AMIDES. On the cost side, there is an initial effort to (1) install
AMIDES, (2) establish an (automated) training process, and
(3) manually examine the initial training data for potential
evasions. Additionally, ongoing effort arises from sifting the
raised evasion alerts (which, according to our evaluation, con-
tain very few false positives). On the benefit side, AMIDES
will likely detect a majority of SIEM rule evasions, which
would otherwise go undetected. Thus, AMIDES reduces de-
tection blind spots and enables a timely response to such
cyberattacks. While there seem to be no reliable data on the
prevalence of such evasions, we expect the benefits to out-
weigh the costs of AMIDES for many organizations in view
of the significantly reduced risk of undetected cyberattacks.

8 Related Work

The main goals of our work are to identify and subsequently
reduce detection blind spots in enterprise networks that arise
from SIEM rule evasions. To the best of our knowledge, these
issues have not been addressed by other work before, hence,
conducting an empirical comparison with related work is not
possible. Still, there are numerous works that share the overar-
ching goal of threat detection in enterprise networks. We be-
gin by discussing the most similar ideas, namely, approaches
utilizing events of any kind (but not necessarily from a SIEM
system) to detect evasions in a broad sense. Afterwards, we
discuss approaches that also utilize events but do not address
evasions. Lastly, vice versa, we discuss approaches related to
evasion detection but utilizing other data sources than events.

Event-Based Evasion Detection Ongun et al. [40] address
the challenge of detecting adversarial executions of benign
programs, which is a use case also covered by various of the
analyzed Sigma rules. The authors generate features from pro-
cess creation command lines and train a multi-class classifier
for five attack classes using an active learning approach. In
contrast to AMIDES, attack classes must be defined manually
and the active learning process requires ongoing analyst re-
sources, whereas our approach leverages the ever-growing
rule corpus of the Sigma community and therefore does not
require any manual labeling. Buyukkayhan et al. [14] utilize
a combination of event records, static program analysis, and
contextual information to discover programs behaving simi-
larly to known malware as well as programs impersonating
known benign programs. While this approach can be seen as a
type of evasion detection, it clearly differs from our goal to de-
tect SIEM rule evasions. Dreger et al. [21] utilize web server
logs to detect evasions of a network-based intrusion detection
system (NIDS) by correlating host-based and network-based
events. While this approach seems to work well for its specific
use case, it cannot detect SIEM rule evasions.



Other Event-Based Threat Detection Numerous threat
detection approaches utilize event records (just as AMIDES)
but pursue other goals than finding (SIEM) rule evasions.
Early works apply various learning methods to host-based
audit logs for detecting anomalies or deriving detection
rules [19, 22, 34]. In contrast, publications within the last ten
years often consider events from a large number of systems
in a network or from multiple event sources to find anoma-
lies [28, 43, 45, 59, 65]. Particularly in the last few years,
various works employ provenance graphs to model causal
relations in system behavior, predominantly for finding sus-
picious activity [2, 24, 36, 66]. While all of these approaches
address threat detection from events, they do not provide or-
ganizations with a straightforward way to reduce detection
blind spots caused by SIEM detection rule evasions.

Other Evasion Detection The challenge of evasion detec-
tion has been studied for other data sources than event records
as well, namely, network traffic and files (especially potential
malware files). Considering network traffic, Sohi et al. [52]
enhance the detection performance of an NIDS by generat-
ing signature mutations using a neural network. Varghese et
al. [58] split NIDS signatures into smaller pieces to counter
evasions by TCP fragmentation. Cheng et al. [15] survey
NIDS evasion techniques and assess their effectiveness. Con-
sidering files, Shiel and O’Shaughnessy [50] as well as Li et
al. [35] analyze fuzzy hashing to detect variants of known
malware files. Kapravelos et al. [30] detect evasive behavior
in malicious JavaScript files by comparing them to known ma-
licious variants. Aslan and Samet [5] survey further malware
detection approaches. Due to their fundamentally different
data sources, the above approaches are not meant to detect
SIEM rule evasions and are thus complementary to AMIDES.

9 Conclusion

This work addresses evasions of SIEM detection rules, which
can lead to critical detection blind spots within enterprise net-
works. To quantify the risk of such evasions, we analyzed a
set of widespread open-source SIEM rules, namely, Windows
process creation rules from the official Sigma repository. We
found that out of 292 analyzed rules, 110 can by fully evaded
and 19 can be partially evaded, potentially enabling adver-
saries to perform a large number of known attacks without
being detected. To remedy this situation, we proposed the
novel concept of adaptive misuse detection, an extension of
conventional (i.e., rule-based) misuse detection where incom-
ing events are compared to SIEM rules on the one hand and
known-benign events on the other hand to detect evasions and
additionally estimate which rules were evaded. Notably, this
approach is well-suited for implementation in enterprise net-
works because it relies on already existing data (i.e., a SIEM
ruleset and a set of historical benign events).

Using our open-source proof-of-concept implementation
AMIDES, we evaluated our approach on four weeks of be-
nign process creation events from a large enterprise network
and 512 manually created evasions. At its default sensitivity,
AMIDES detected 70 % of the (otherwise undetected) evasions
with zero false alerts. AMIDES processes ~156 000 events per
second in operation and requires 42 minutes for training on
a commodity server with our dataset, making it fast enough
for operation even in very large enterprise networks. We also
evaluated AMIDES’ capability to attribute evasions to evaded
SIEM rule(s) and found that for 95 % of our evasions, the
actually evaded rule was within AMIDES’ top 10 propositions,
thus likely helping analysts in verifying and analyzing alerts.
Furthermore, we showed that AMIDES still detects a signifi-
cant share of evasions with no false alerts even if the benign
training data are heavily tainted with evasions.

Future work should further examine widespread SIEM
rules for potential evasions and expand the concept and im-
plementation of adaptive misuse detection by additional event
types and fields to increase the coverage of potential detection
blind spots. Overall, we showed that organizations relying
on SIEM rules for cyberattack detection are prone to critical
detection blind spots but can significantly reduce them with
moderate effort by utilizing adaptive misuse detection. Thus,
our work contributes to an improved detection of cyberattacks
in enterprise networks and ultimately to reducing the damage
arising from data theft, sabotage, and extortion.
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A Implementation Details and Discussion

This section extends our description of AMIDES’ implementa-
tion in Section 5, justifies our choices, and discusses potential
alternatives. Generally speaking, we see our main contribu-
tion in proving that our concept of adaptive misuse detection
(particularly: learning from SIEM rules) succeeds in detecting
evasions in enterprise networks, despite using straightforward
machine learning techniques. Hence, we did not strive to
(over-)optimize our results by tailoring the feature extraction
to our specific evasion instances or comparing various classi-
fiers and choosing the best one for our specific dataset. Yet,
we considered and/or tested several alternatives that seemed
sensible, which are discussed in the following.

Feature Extraction We designed AMIDES’ feature extrac-
tion based on insights from creating evasions and sifting be-
nign events. In the filtering step (cf. Figure 2), we remove
characters from the command line string that adversaries can
insert almost anywhere (even within words) to evade signa-
tures without invalidating the command. (We also use this
technique for many of our evasions.) While the exact charac-
ter set for filtering is arguable, we chose characters known to
allow for cmd.exe and PowerShell evasions [11, 12].

The subsequent splitting step tokenizes the command line
into terms. We experimented with different splitting character
sets optimized for command lines but eventually opted for a
simple “word” splitting (regex \W) since we discovered too
many edge cases where other splittings lead to undesirable re-
sults. Though removing some context information, we found
word splitting to be the most robust and generalizable.

While sifting the enterprise events, we found a large num-
ber of command lines containing unique arguments such as
timestamps or IDs, bloating the feature space without con-
tributing relevant information. Hence, we implemented the
two pruning rules described in Section 5 to remove the major-
ity of such irrelevant arguments. We suppose that these rules
fit other enterprise environments as well, but suggest to en-
sure for any new environment that they succeed in removing
irrelevant terms while preserving the relevant ones.

Finally, the remaining terms are transformed into a tf-idf
vector. Since we have an extremely imbalanced dataset, we
found it desirable to assign lower weights to frequent terms
(as tf-idf does) to counter potential benign terms within an eva-
sion dominating the classification decision. We also tried reg-
ular and normalized bag-of-words vectorization, but got sig-
nificantly worse results (as expected). So far, we did not exper-
iment with context-sensitive methods such as word2vec [39]
because the utilized Sigma signatures are often very short, con-
sisting of only one or few words, whereas the benign events
comprise full command lines. Together with the fact that ar-
gument positions are often exchangeable, we do not expect
context-sensitive methods to perform well for our approach,
hence leaving them to potential future work.
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Classification Various classifiers come into question for
intrusion detection tasks [32, 42]. Since a sound comparison
would go beyond the scope of this work, we opted for linear
SVMs according to a best-practice guide [48]. We found them
to be suitable for our data both in terms of classification and
computational performance. Moreover, linear SVMs enable
straightforward analysis of the influence of input terms on the
classification result, facilitating effective feature design.

For hyperparameter tuning, we perform grid search over
25 exponentially growing C values between 0.01 and 10,
with class balancing (class_weight in scitkit-learn) on and
off, respectively. We also tested other SVM kernels (RBF,
polynomial, and sigmoid) but did not get significantly better
results. Overall, we cannot rule out that other classifiers might
yield better results, but leave their evaluation to future work.

Threshold Configuration The ideal decision threshold in
operation usually differs from the one resulting from training,
mainly because security analysts in enterprises need to inves-
tigate alerts from multiple security systems within limited
time. Hence, both too many and too few alerts can lead to
missed attacks (cf. Section 2). Therefore, we decided to set
the default threshold for operation such that AMIDES raises
a configurable number N of false alerts per day on average,
thus matching available analyst resources. This feature is im-
plemented simply by setting the threshold such that ND false
positives occur in the training set, where D is the length of the
training set in days. This method assumes similar statistical
properties of benign events in training and operation, which
we deem justified when performing regular retraining. For
our evaluation, we chose N = 0 for the sake of simplicity,
effectively placing the default decision threshold just above
the worst-classified benign training sample (cf. Appendix B).

Furthermore, besides a sensible default threshold, we also
calculate a sensible threshold range with the goal of provid-
ing non-expert users with a simple configuration parameter
between zero and one, where 0.5 is the default threshold, al-
lowing to put a strong emphasis on either recall or precision.
We implement this by linearly mapping a subinterval of the
SVM decision function values to [0,1] such that the default
threshold lies at 0.5 and the MCC curve remains above 0.1
over most of the interval (note that MCC is more robust than
F1 score or individual precision/recall limits [16]).

B Analysis of Classification Performance

To assess AMIDES’ misuse classification performance, we
statistically analyzed its output for all benign events, evasion
events, and Sigma rules. Figure 7 shows the distributions of
the resulting SVM decision function values. The dashed line
depicts the default threshold as described in Appendix A for
N = 0, which also yields zero false alerts on the validation set
(which is not generally the case since there could be worse-
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Figure 7: The imperfect class separability and high imbalance
would result in a ~70 % evasion detection rate in practice.

classified benign events than in the training set). We can see
that the classifier largely succeeds in separating the training
classes (i.e., benigns and rules), with the median samples
being located approximately at −1 and 1, respectively, but no
perfect separation is achieved. Furthermore, the plot reveals
an uneven distribution of the benign events, which we can
attribute to large clusters of similar command lines.

Looking at the evasions, both median and average values
are slightly below those of the rules. Particularly, we can
see that a significant fraction (30 %) exhibits smaller values
than the highest-valued benign cluster just below the default
threshold. Even though this cluster comprises only a small
fraction of the benign events, the extreme class imbalance
(factor ~145 000) causes a sharp decline in precision (cf. Fig-
ure 3), rendering lower thresholds impractical due to many
false alerts, thus yielding the reported 70 % detection rate.

We also analyzed the contributions of all features to the
classification results. We found that many evasions contain
terms that appear in benign events but not in rules, thus ex-
plaining their lower decision function values. Particularly,
signatures often omit less relevant parts of malicious com-
mand lines (e.g., the full path of an executable), hence such
terms in evasions influence their classification towards benig-
nity. For example, the term system32 has a strong weight
towards benignity since it frequently appears in benign events
but rarely in rules. Vice versa, there is a cluster of ~188 k mis-
classified benign executions of winlogon.exe close to the
default threshold because this binary appears in several rules
(with additional conditions that AMIDES currently ignores due
to our restriction to the command line field). Consequently,
a straightforward approach to improve AMIDES’ detection
performance in practice would be to filter its alerts by a list
of known false positives (i.e., misclassified benign command
lines), allowing to set a lower threshold and thus detect more
evasions without increasing the number of false alerts.

Overall, while this analysis reveals potential limitations of
learning from SIEM rules, we nonetheless consider our con-
cept of adaptive misuse detection (and AMIDES in particular)
highly beneficial in practice since it facilitates a significant
reduction of detection blind spots in enterprise networks.



C Artifact Appendix

C.1 Abstract

To facilitate reproduction of our experiments as well as exten-
sions and improvements of AMIDES, our artifact comprises
five components: (1) the AMIDES source code along with
automation scripts, (2) the set of SIEM rules from the pub-
lic Sigma repository that we analyzed for possible evasions,
(3) the set of matches that we created, i.e., SIEM events trigger-
ing the aforementioned detection rules, (4) the set of evasions
that we created, i.e., matches adapted such that the executed
commands achieve the exact same goal without triggering
the respective rule, and (5) a set of benign SIEM events that
we created using the open-source testbed SOCBED (since
we are not allowed to share events from the real enterprise
network). Together, these components enable reproduction of
our experiments and thus confirmation of our claims.

C.2 Description & Requirements

C.2.1 Security, privacy, and ethical concerns

The artifact does not pose a security risk when downloaded
and executed since none of the potentially malicious com-
mand lines within the SIEM events and rules are run during
the experiments. However, security software such as endpoint
protection products might still raise alerts due to these com-
mand lines being contained in the event and/or rule files.

Due to ethical concerns, we will not make our full set of
evasions publicly available (as stated in the paper). However,
our artifact contains a small number of evasions for testing
purposes, namely, those given as examples in the paper in
Tables 1 and 3. Please contact us if you require the full set of
evasions for your research.

C.2.2 How to access

The artifact is available on GitHub1. Please start by cloning
or downloading the repository on a commodity computer
running Linux or macOS.

C.2.3 Hardware dependencies

Assuming small training and validation datasets such as those
provided with the artifact, AMIDES runs on a commodity com-
puter with a minimum of 8 GB of RAM and requires around
2 GB of disk space. For larger training and validation datasets,
more RAM and disk space are required. A fast CPU has a
positive impact on the duration of training and validation.

1https://github.com/fkie-cad/amides/releases/tag/v1.0.0

C.2.4 Software dependencies

AMIDES is written in Python. The repository contains a list
of Python package requirements that need to be installed in
order to use AMIDES. All of the requirements can be installed
from PyPI using pip. For convenience, the repository contains
a Dockerfile and automation scripts to build containers run-
ning AMIDES and reproduce our experiments. Building and
operating the containers requires a Docker installation. The
containers should run on any operating system, however, our
automation scripts are currently written for Linux and macOS.
Please refer to the README file for further information.

C.2.5 Benchmarks

The majority of experiments in our paper (all except “Appli-
cability to Other Rule and Event Types”) are based on real
benign SIEM events from a large enterprise network that are
strictly prohibited to be taken off the premises. However, as
stated in §6 “Datasets and Ethical Considerations”, we addi-
tionally created synthetic benign events using the open-source
testbed SOCBED (which were also used for the aforemen-
tioned experiment) to facilitate reproduction of our experi-
ments and confirmation of our claims. These synthetic benign
events, along with all other data required for reproducing our
experiments (cf. §C.1) are contained in the repository except
for the full set of evasions (cf. §C.2.1).

C.3 Set-up
C.3.1 Installation

After cloning or downloading the repository, please execute
the steps described in the “Building the Quickstart Environ-
ment” section of the README file to build the image and
containers that will run AMIDES and reproduce our experi-
ments. Alternatively, AMIDES can be installed locally, which
is described in the “Installation” section of the README file.

C.3.2 Basic Test

Running the Installation (§C.3.1) and Experiments (§C.4.2)
instructions without errors ensures that the quickstart envi-
ronment and AMIDES are functioning properly. If any of the
automated steps fail, corresponding output messages will be
generated. In case AMIDES was installed locally, the success-
ful execution of its unit tests indicates that all components
are functioning. Please refer to the “Testing” section of the
README file for instructions on how to execute unit tests.

C.4 Evaluation workflow
C.4.1 Major Claims

(C1): AMIDES detects a majority of our crafted evasions
without any false alerts (cf. §6.1 “Classification Perfor-

https://github.com/fkie-cad/amides/releases/tag/v1.0.0


mance” and Figure 3, plot “AMIDES”).
(C2): AMIDES’ classification performance keeps up with a

(much more costly) benchmark approach (cf. §6.1 “Com-
parison with Benchmark Approach” and Figure 3).

(C3): AMIDES helps security analysts to attribute its evasion
alerts to potentially evaded SIEM rules (cf. §6.2 and
Figure 4).

(C4): AMIDES degrades gracefully in detection performance
when the training set is tainted with attacks (cf. §6.3
“Influence of Tainted Training Data” and Figure 5).

(C5): AMIDES is applicable to multiple SIEM rule and event
types (cf. §6.3 “Applicability to Other Rule and Event
Types” and Figure 6).

C.4.2 Experiments

Please follow the instructions given in the “Running Ex-
periments using the Quickstart Environment” section of the
README file. The corresponding container will then auto-
matically execute all four experiments (E1-E4, see below),
reproduce the above-mentioned plots as PDF files, and place
them in the specified folder. Note that the file names of the
generated plots include the major claims they are addressing
(i.e., C1-C5). In case AMIDES was installed locally, please
refer to the “Running Experiments” section of the README
file, which also contains more details on the experiments.

Since the benign SIEM events in the repository are not
from a real enterprise network but generated by a testbed
(cf. §C.2.5), the plots corresponding to Figures 3, 4, and 5
will look different compared to the paper. More precisely, the
results on the testbed-generated data are significantly better
because the number of benign events is much lower compared
to the real enterprise events, leading to an easier classification
task for AMIDES (cf. §6.1). Still, these results confirm our
claims and facilitate future research.

The evaluation comprises the four subsequently mentioned
experiments and requires approximately 45 human-minutes,
20 compute-minutes, and around 2 GB of disk space. As a con-
gruence check, we provide the correct output in the document
Paper Supplement.pdf in the repository.

(E1): Classification Performance [2 compute-minutes]:
AMIDES’ evasion detection performance is com-
pared to a benchmark approach that was trained
using matches instead of SIEM rules. Result:
figure_3_c1_c2_misuse_classification.pdf
in the amides/plots/process_creation folder.

(E2): Rule Attribution [2 compute-minutes]: AMIDES’
rule attribution performance is evaluated by as-
sessing if detected evasions are correctly assigned
to the corresponding Sigma detection rules. Re-
sult: figure_4_c3_rule_attribution.pdf in the
amides/plots/process_creation folder.

(E3): Tainted Training Data [10 compute-minutes]:
AMIDES’ evasion detection performance is evaluated

after training data has been tainted using evasions.
The tainting is repeated for different fractions of
events and different events for each fraction. Re-
sult: figure_5_c4_tainted_training.pdf in the
amides/plots/process_creation folder.

(E4): Other Rule and Event Types [2 compute-minutes]:
AMIDES’ evasion detection performance is evaluated
for three additional rule and event types (Windows
PowerShell, Windows Registry, and Web). Result:
figure_6_c5_classification_other_types.pdf
in the amides/plots folder.

C.5 Notes on Reusability
AMIDES is fit for application in enterprise networks. To this
end, users can perform the required training with their own
data (i.e., a SIEM ruleset and a set of up-to-date benign SIEM
events). The resulting model can then be loaded and applied
to SIEM events by the open-source log data processor Log-
prep2, for which we implemented and published an AMIDES
processor3. For more information on how to create models
for AMIDES from scratch, refer to the “Running Custom Ex-
periments” section of the README file.

C.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

2https://github.com/fkie-cad/logprep
3https://logprep.readthedocs.io/en/latest/user_manual/c

onfiguration/processor.html#amides

https://secartifacts.github.io/usenixsec2024/
https://github.com/fkie-cad/logprep
https://logprep.readthedocs.io/en/latest/user_manual/configuration/processor.html#amides
https://logprep.readthedocs.io/en/latest/user_manual/configuration/processor.html#amides
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