
Reproducible and Adaptable
Log Data Generation for

Sound Cybersecurity Experiments
Rafael Uetz

Fraunhofer FKIE
Bonn, Germany

rafael.uetz@fkie.fraunhofer.de

Christian Hemminghaus
Fraunhofer FKIE
Bonn, Germany

c.hemminghaus@fkie.fraunhofer.de

Louis Hackländer
Fraunhofer FKIE
Bonn, Germany

louis.hacklaender@fkie.fraunhofer.de

Philipp Schlipper
Fraunhofer FKIE
Bonn, Germany

philipp.schlipper@fkie.fraunhofer.de

Martin Henze
RWTH Aachen University

Aachen, Germany
Fraunhofer FKIE
Bonn, Germany

henze@cs.rwth-aachen.de

ABSTRACT
Artifacts such as log data and network traffic are fundamental for
cybersecurity research, e.g., in the area of intrusion detection. Yet,
most research is based on artifacts that are not available to others
or cannot be adapted to own purposes, thus making it difficult to
reproduce and build on existing work. In this paper, we identify the
challenges of artifact generation with the goal of conducting sound
experiments that are valid, controlled, and reproducible. We argue
that testbeds for artifact generation have to be designed specifically
with reproducibility and adaptability in mind. To achieve this goal,
we present SOCBED, our proof-of-concept implementation and
the first testbed with a focus on generating realistic log data for
cybersecurity experiments in a reproducible and adaptable manner.
SOCBED enables researchers to reproduce testbed instances on
commodity computers, adapt them according to own requirements,
and verify their correct functionality. We evaluate SOCBED with an
exemplary, practical experiment on detecting a multi-step intrusion
of an enterprise network and show that the resulting experiment is
indeed valid, controlled, and reproducible. Both SOCBED and the
log dataset underlying our evaluation are freely available.

CCS CONCEPTS
• Security and privacy→ Intrusion/anomaly detection and
malware mitigation; Network security; • Computing method-
ologies → Modeling and simulation.

KEYWORDS
log data, testbed, reproducibility, intrusion detection, cybersecurity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3488020

ACM Reference Format:
Rafael Uetz, Christian Hemminghaus, Louis Hackländer, Philipp Schlipper,
and Martin Henze. 2021. Reproducible and Adaptable Log Data Generation
for Sound Cybersecurity Experiments. In Annual Computer Security Applica-
tions Conference (ACSAC ’21), December 6–10, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3485832.3488020

1 INTRODUCTION
Successful cyberattacks against organizations’ computer networks
have ramped up in quantity and severity over the past years [71].
As a recent example, the 2020 SolarWinds hack alone affected thou-
sands of companies and United States government offices [20].
Timely detecting such breaches and thus stopping adversaries be-
fore they reach their final goals requires indicators of adversary
activity. Log data provide numerous valuable sources of such indica-
tors, ranging from operating system logs (e.g., Windows Event Logs
or syslogs) over service logs (e.g., Apache’s Common Logs) to dedi-
cated security system alerts (e.g., from firewalls, intrusion detection
systems (IDSs), or endpoint protection agents). Due to this large
number of different log data sources, thoughtful configuration and
analysis of these sources is vital for intrusion detection [4, 69, 74].

To aid in this task, companies employ security information and
event management (SIEM) systems, which try to tackle the task
of intrusion detection with several rule-based and anomaly-based
methods [6], but are far from being perfect [32]. Consequently,
current research is concerned with questions such as how events
or alerts can be enriched, prioritized, or correlated [43, 52, 68] as
well as how adversaries can be modeled to improve the discovery
of cyberattacks [59].

Any research dealing with these questions must be backed by
sound evaluations – which require meaningful log data to evaluate
against. Unfortunately, there is a significant lack of such data in the
scientific community [65] and freely available datasets usually do
not match researchers’ requirements for novel experiments [55].

Consequently, a recent survey by Landauer et al. [28], e.g., found
that almost 60 % of papers in the field of log clustering rely on
unpublished datasets for evaluation and the majority of those using

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485832.3488020
https://doi.org/10.1145/3485832.3488020

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Rafael Uetz, Christian Hemminghaus, Louis Hackländer, Philipp Schlipper, and Martin Henze

public datasets concentrates on only two of them. While unpub-
lished datasets prevent reproduction of findings, published yet
fixed datasets are limited in scope, not adaptable (e.g., w.r.t. changes
and up-to-dateness), and their creation process might lack trans-
parency [67]. As such, existing fixed datasets are often pointless for
novel experiments, as unchangeable underlying scenarios or system
configurations do not match the requirements of these experiments.

In this paper, we study the question of how to generate mean-
ingful, reproducible, and adaptable log datasets for sound scientific
cybersecurity experiments to address the lack of suitable and freely
available datasets that can be adapted to the requirements of novel
experiments. By formulating design goals for sound experiments in
log data research, we find a need for dedicated and publicly available
testbeds to efficiently generate suitable and realistic log datasets
as they would arise in a real enterprise network in an adaptable
and reproducible manner. To address this need, we present and
evaluate SOCBED, a proof-of-concept testbed allowing for a repro-
ducible and adaptable generation of log datasets. SOCBED enables
researchers to better build on existing work by reusing existing
scenarios and consequently save the effort of building own testbeds
from scratch while at the same time improving the comparability
of results.

We present the following contributions:

• We survey the field of log data generation for cybersecurity ex-
periments and find that data collection in productive networks or
proprietary testbeds leads to experiments that often lack validity,
controllability, and reproducibility.

• To remedy this situation, we derive design goals for sound ex-
periments in cybersecurity research, specifically focusing on the
generation of realistic, transparent, adaptable, replicable, and
available artifacts such as log datasets.

• To showcase and validate our approach, we present SOCBED, a
self-contained open-source cyberattack experimentation testbed
with a focus on generating reproducible and adaptable log data-
sets, e.g., for intrusion detection research. SOCBED simulates a
company network with clients, servers, and common services as
well as benign user activity and an adversary performing multi-
step attacks. The testbed can be built and run on a commodity
PC and is freely available [58].

• We use SOCBED to perform a practical attack detection experi-
ment and show that this experiment is reproducible on commod-
ity PCs, yields meaningful results, and allows for an adaptation
of log data generation in a controlled manner. The generated
dataset is also publicly available [66].

The remainder of this paper is structured as follows. In Section 2
we formulate challenges of acquiring log data for cybersecurity
research and motivate the need for reproducible and adaptable
log datasets. Subsequently, we derive design goals for sound cy-
bersecurity experiments in Section 3 and analyze to which extent
related work meets these goals in Section 4. To fill the gap of a
testbed particularly targeting the generation of reproducible and
adaptable log data, we present SOCBED in Section 5. We evaluate
the reproducibility and adaptability of SOCBED by performing an
exemplary experiment in Section 6, before discussing SOCBED’s
design decisions and resulting limitations in Section 7. Section 8
concludes this paper.

2 LOG DATA IN CYBERSECURITY RESEARCH
Log data are indispensable and extremely valuable sources for the
timely detection of network breaches [69]. Consequently, they pro-
vide the foundation for various streams of research, e.g., w.r.t. en-
richment, prioritization, and correlation of events [43, 52, 68] or
the realistic modeling of adversaries [59]. However, although being
required as foundation for sound evaluations, there is a significant
lack of meaningful log data in the scientific community [9, 55, 65].
In the following, we discuss why collecting sound log data from pro-
ductive networks is difficult and why fixed datasets generated from
proprietary testbeds have several drawbacks as well (Section 2.1).
Subsequently, we argue that the resulting limitations are an obsta-
cle for the reproducibility of log data research and for building on
existing work (Section 2.2) and argue how adaptable log datasets
can remedy this situation (Section 2.3).

2.1 Challenges of Acquiring Log Data
Log data as required for intrusion detection research are usually
generated by assets as they are typically found in company net-
works, i.e., operating systems, services, and dedicated security prod-
ucts such as firewalls, network-based intrusion detection systems
(NIDSs), and endpoint protection agents. Depending on the desired
experiment, logs of benign user activity and/or realistic cyberat-
tacks are required. To achieve this goal, log data acquisition can be
done in two fundamentally different ways: Collection in a produc-
tive network with real users or generation in a dedicated, controlled
lab environment. Both sources come with specific advantages and
disadvantages, which are discussed in the following.

While collecting real-world log data in a productive network has
the obvious advantage of providing realistic data, it also comes with
significant drawbacks: Most importantly, the variety of successful
cyberattacks may be too small for meaningful evaluations because
the productive network is either not vulnerable to the attacks, their
implementation is too costly, or attack execution is deemed too
dangerous and thus not permitted. Likewise, confidentiality or
privacy issues often forbid the publication of collected data or
necessitate extensive anonymization, severely reducing utility for
other researchers [65]. Furthermore, as there is only one instance
of each productive network and its state always changes, collected
data are neither replicable at a later point in time nor reproducible
by other researchers. This leads to a lack of controllability: It is not
possible to examine the effect of a changed parameter that affects
log data generation (e.g., configuration change) in an isolated way.
Finally, the adaptability of the productive network is usually limited.
It might not be possible to add, remove, or exchange certain assets as
required for an evaluation. In particular, other researchers without
access to the network cannot perform configuration changes that
might be required for subsequent experiments.

Consequently, researchers often rely on dedicated lab testbeds
for log data acquisition to avoid these issues [12]. Log datasets gen-
erated by such testbeds are usually not affected by confidentiality
or privacy concerns and can therefore be made available. However,
typically only datasets are published, but the testbeds with which
they were generated are not [9, 42, 55]. As all datasets are created
with a specific use case in mind (e.g., IDS evaluation), they often
do not fit the requirements of other researchers even though the

Reproducible and Adaptable Log Data Generation for Sound Cybersecurity Experiments ACSAC ’21, December 6–10, 2021, Virtual Event, USA

underlying testbed could be adapted to generate the desired data
if it was publicly available. Thus, researchers who require slightly
different data often have to create an own testbed instead of using
an existing dataset.

2.2 Missing Reproducibility and Adaptability
Although being one of the most important properties of scientific
experiments [47], reproducibility is often limited in current log data
research [28]. Besides being an integral part of sound experiments,
reproducibility also facilitates adaptability and thus spurs further
research: With the data and information required to reproduce
others’ findings, experiments can be (slightly) adapted to study
novel research questions. Specifically focusing on the research
area of intrusion detection, numerous works [25] present and use
once generated datasets without the ability to reproduce or adapt
them, let alone the option to adjust them to other use cases. To
illustrate this issue, Sharafaldin et al. [55] provide an overview over
publicly available datasets ranging from network packet to system
call captures generated for IDS training. For all of these datasets,
the testbeds used to generate the dataset are not made available,
thus preventing reproduction or adaptation.

Even worse, for a large batch of work on log data and intrusion
detection, the underlying log data are not (publicly) available at
all, rendering the reproduction (and thus also extension) of their
experiments impossible. Examples include MalRank [43], Smoke
Detector [52], and Beehive [74]. We assume that the main reason for
not disclosing these datasets are confidentiality or privacy concerns.

2.3 The Case for Adaptable Log Datasets
Given the missing reproducibility and adaptability of existing log
datasets, using these as a basis for novel experiments is often mean-
ingless because the datasets’ underlying scenarios or configurations
differ from what is required for novel experiments. Common issues
include outdated scenario components (e.g., obsolete operating sys-
tems or attacks that are no longer prevalent in the real world), a
scenario not matching the new experiment’s context (e.g., Windows
vs. Linux clients/servers or different security measures in place),
or a logging configuration not producing the logs required for the
evaluation (e.g., logs produced by an up-to-date Sysmon version
are required as input for an IDS). We encountered such issues in
several experiments in the context of intrusion detection, leaving
us with no other choice than building testbeds from scratch to gen-
erate log data instead of using existing log datasets. Given these
problems with missing reproducibility and adaptability of log data
research, especially in the context of intrusion detection, we set out
to remedy this situation with our contributions in this paper.

To achieve this goal, we are convinced that long-ranging, usable
log datasets for sound cybersecurity research must be subject to fre-
quent updates and modifications by different groups of researchers.
This can only be achieved by an open-source testbed specifically
built for easy reproducibility and adaptability, thus allowing a large
number of researchers to reproduce log datasets and adapt, e.g., the
logging configuration, while retaining the same scenario. Vice versa,
the scenario (e.g., systems, services, or attacks) can be adapted or
extended while still producing the same types of log data.

are available as open source

valid

controlled

reproducible

available

realistic emulate real-world scenario

transparent

adaptable

replicable run on commodity hardware

execute deterministic activity

provide self-tests

sound
experiments

artifacts for
experiments

testbeds for
artifact generation

supports

Figure 1: Conducting sound experiments imposes require-
ments on the used artifacts (e.g., log data), which in turn
impose requirements on testbeds used for their generation.

3 DESIGN GOALS FOR SOUND
CYBERSECURITY EXPERIMENTS

Our analysis of the use of log data in cybersecurity research identi-
fies several pitfalls when performing experiments based on log data,
especially w.r.t. reproducibility and adaptability. In the following,
we summarize these issues and derive design goals for sound cyber-
security experiments. In this process, we abstract from log data to
artifacts in general, but still focus on log data in the examples given.
As summarized in Figure 1, we start by discussing three vital prop-
erties of scientific experiments in general: validity, controllability,
and reproducibility (Section 3.1). From these properties, we derive
design goals for artifacts used by such experiments (Section 3.2).
Finally, we derive design goals for testbeds for artifact generation
(Section 3.3). As a result, we argue that sound experiments that
require artifacts such as log data benefit strongly from testbeds
that allow for (1) realistic scenarios and (2) deterministic activity
while being easy to use for other researchers because they are (3)
open source, (4) can be run on commodity hardware, and (5) pro-
vide self-tests to verify correct functionality after installation or
adaptation.

3.1 Properties of Sound Experiments
Cybersecurity is both an engineering discipline and a science [47].
In both fields, sound experiments are fundamentally important to
test hypotheses and thus advance knowledge [21, 39]. While there
is no generally accepted definition of soundness [21], literature on
the design of experiments often states that a sound experiment must
allow for valid conclusions and be controlled and reproducible [8,
39, 47]. We now describe why these properties are important in
general and for log data-based experiments in particular.

Valid. Validity is the extent to which a concept, conclusion, or
measurement is well-founded and rules out alternative explana-
tions [49]. We can distinguish internal validity (i.e., the confidence
in the conclusions drawn in the strict context of an experiment)
from external validity (i.e., the degree to which conclusions can be
generalized and/or applied to the real world) [35]. In the field of
cybersecurity, there is an ongoing debate on the external validity
of research that is based on inappropriate datasets such as the old
and overused DARPA/KDD’99 datasets [42, 55, 60].

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Rafael Uetz, Christian Hemminghaus, Louis Hackländer, Philipp Schlipper, and Martin Henze

Controlled. Each experiment can be seen as a process that trans-
forms some input (e.g., attacks against a computer network) into
some output (e.g., intrusion alerts) [39]. There are usually multiple
variables that affect the outcome, some of which can be controlled
by the experimenter (e.g., timing of the attacks) while others can
not (e.g., activity of background processes). Controllability is the
extent to which variables can be controlled. Ideally, an experiment
can be repeated multiple times while changing exactly one variable
at a time to reliably examine cause-effect relationships [47].

Reproducible. An experiment is called reproducible if its results
can be reproduced by other researchers [3]. This serves multiple
purposes: (1) Results become more trustworthy when they are
independently verified by other researchers [39], (2) building on
existing research and advancing the state of the art often requires
reproduction of existing results in the first place [3], and (3) building
on original experiments also makes results directly comparable.

3.2 Research Artifacts for Sound Experiments
To avoid the previously discussed pitfalls, we now describe five
properties that artifacts used in experiments should exhibit to facili-
tate sound experiments (cf. Figure 1).

Realistic. For experiment results to be transferable to real-world
use cases and thus be externally valid, the used artifacts must re-
semble key properties of real-world data [60]. The notion of realism
depends strongly on the context of a concrete experiment. For exam-
ple, most IDSs only consider the contents of network packets, not
their timing, so a dataset with realistic contents but unrealistic tim-
ing would still be valid. On the contrary, some IDSs might consider
timing, making the same dataset invalid for their evaluation.

Transparent. All relevant details on the contents of artifacts
should be made transparent to other researchers. A failure to do
so can lead to incorrect assumptions about capabilities and limita-
tions of a dataset and ultimately to invalid conclusions [3]. Non-
transparent artifacts can also lead to uncontrolled experimental
behavior in case changed variables cause unexpected side effects.

Adaptable. Adaptability is the extent to which artifacts such as
log data can be recreated with changed parameters (e.g., updated
cyberattacks). Adaptability supports validity because it allows ex-
perimenters to adapt artifacts depending on the needs of a new
experimental context (e.g., re-running an experiment with an at-
tacked system updated from Windows 8 to Windows 10 to regain
external validity for real-world application).

Replicable. Replicability is the extent to which artifacts can be
recreated under the same conditions [3], e.g., running the same
testbed on the same host. It is a prerequisite for controlled experi-
ments as it allows for multiple iterations with changed parameters
to analyze cause-effect relationships [39]. It is also a prerequisite
for reproducibility, which allows other researchers to obtain similar
results under different conditions (e.g., same testbed, different host).

Available. Lastly, for an experiment to be reproducible by other
researchers, the used artifacts must be made (freely) available to
them, either as a dataset or as a testbed that allows to reproduce
the artifacts on own hardware.

3.3 Testbeds for Artifact Generation
In Section 2, we argued that artifacts collected from productive
systems or networks usually do not allow for controlled and repro-
ducible experiments and thus, dedicated testbeds are an essential
means to create artifacts for sound experiments. In the following,
we present five principal properties that a testbed for artifact gener-
ation should possess to fulfill the previously described properties
of artifacts for sound experiments (cf. Figure 1).

Real-World Scenario. Carefully recreating a real-world scenario
in a testbed is vital for the generation of realistic artifacts [55]. For
example, experiments analyzing intrusions of enterprise networks
require a testbed scenario with realistic topology (network zones
etc.), assets (operating systems, services, etc.), and activity (benign
user activity, cyberattacks, etc.).

Deterministic Activity. Any activity in the testbed should be per-
formed in a deterministic way to ensure transparent and replicable
artifacts. For example, attacks should be scripted instead of per-
formed manually. If stochastic activity is required (e.g., to train
anomaly detection systems), it should be pseudo-random with a
configurable seed, thus making it replicable.

Open Source. Providing a testbed as open-source software has
multiple advantages: (1) Artifact generation becomes transparent
for other researchers, enabling a detailed analysis of why/how cer-
tain artifacts are created, (2) artifact generation becomes adaptable
for others so that they can build on previous work, and (3) log
data generated by open-source testbeds are usually not affected by
privacy or confidentiality concerns, improving their availability.

Commodity Hardware. Some testbeds build on multiple physical
systems and/or specialized hardware such as proprietary traffic
generators [10, 13], making them costly to reproduce for other
researchers. It is therefore beneficial if a testbed can be run on
commodity hardware (i.e., common desktop, notebook, or server
computers) to aid transparency (because others can re-run a sce-
nario and better understand the generated artifacts) and adaptability
(because adapted versions can be run on own hardware).

Self-Tests. Testbeds are complex and consist of multiple inter-
dependent components, making their installation and operation
prone to errors. A testbed should therefore provide self-tests to
verify that all components function correctly after installation. Self-
tests improve replicability of artifacts because potential errors can
be found and fixed. They also aid adaptability because changes that
break existing functionality can be identified [3].

We would like to note that a complete fulfillment of all desired
properties might not be possible. Some goals might even contradict
each other, e.g., perfect replicability can impede realism because
Internet connectivity must be disabled to avoid non-deterministic
network traffic such as software updates. It is thus the duty of an
experiment designer to find appropriate trade-offs during artifact
generation to facilitate sound experiments.

In the following section, we analyze existing testbeds and show
that all of them have major flaws with regard to the presented
requirements, thus impeding their utility for the generation of log
data for sound cybersecurity experiments.

Reproducible and Adaptable Log Data Generation for Sound Cybersecurity Experiments ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Table 1: Our analysis of existing testbeds from related work
identifies substantial gaps in meeting the requirements for
sound log data generation.

Testbed name or author Rea
l-W

orld
Sce

nar
io

Det
erm

inis
tic

Ope
n So

urc
e

Com
mod

ity
HW

Self
-Tes

ts

LARIAT [51]
National Cyber Range [13]
CyberVAN [10]
ViSe [50]
DETERLab [5]
ATT&CK Evaluations [63]
DetectionLab [31]
SimuLand [37]
Skopik et al. [57]
Landauer et al. [27]

SOCBED (this paper)

Requirement fulfilled: yes partially no not discussed

4 ANALYSIS OF RELATEDWORK
Different streams of related work address the challenge of gener-
ating meaningful and adaptable artifacts for cybersecurity experi-
ments. As artifacts collected from productive systems or networks
typically cannot be made publicly available due to confidentiality or
privacy concerns and are inherently non-replicable (cf. Section 2),
dedicated testbeds are the predominant approach to create such
artifacts. Testbeds for artifact generation can be classified into three
categories [12]: An (1) overlay simulates or emulates desired func-
tionality (e.g., cyberattacks) on top of an existing, usually produc-
tive network, a (2) simulation employs an abstracted model instead
of real networks or machines, and an (3) emulation makes use of
full-featured (i.e., virtualized or physical) systems.

Considering our requirements for testbeds for artifact genera-
tion underlying sound cybersecurity experiments (cf. Section 3.3),
we require testbeds to be implemented with deterministic activity.
Thus, overlay testbeds, which are realized on top of uncontrollable
networks do not fit our requirements. Likewise, simulations are not
well-suited for generating sound artifacts, as, due to abstraction,
they cannot generate realistic log data in the same way as complex,
real software such as operating systems. Consequently, we focus
our analysis of related work on testbeds relying on emulation. We
provide an overview of our analysis in Table 1.

LARIAT [51] extends the testbed of the well-known DARPA 1998
and 1999 intrusion detection evaluations [30] and offers sophisti-
cated adversary and user emulation. However, a proprietary traffic
generator and its use of physical machines prohibit the free gen-
eration of datasets with commodity hardware by others. Likewise,
the National Cyber Range [13], an effort of DARPA to build a large-
scale, diverse physical testbed for cybersecurity testing, consists
of only one instance and access is restricted. CyberVAN [10] is a
complex testbed including user emulation, but relies on commercial
components and is only accessible to selected entities. Since attacks
are performed manually, the testbed also lacks determinism.

ViSe [50] is a testbed based on virtual machines (VMs) and fo-
cuses on the forensic analysis of exploits against common operating
systems. It lacks multi-step attacks and user emulation, thus provid-
ing only limited realism. DETERLab [5] is a cybersecurity testbed
provided as a web service. Registered researchers can create and
run experiments remotely with choosable topology, nodes, and
user/adversary emulation. The code for the testbed is not publicly
available, it does not run on commodity hardware, and it does not
provide self-tests.

MITRE ATT&CK Evaluations [63] assess cybersecurity products
on a yearly basis utilizing a network environment that consists
of Microsoft Windows VMs provided by Microsoft Azure. Rough
information on how the environment was build is publicly available,
but not sufficiently detailed to completely reproduce the performed
experiments. Furthermore, a lack of user emulation impairs real-
ism. DetectionLab [31] is a testbed for Windows domain logging,
focusing on a quick setup with security tooling and best-practice
logging. It does not implement a benign user emulation and also
lacks deterministic activity. SimuLand [37] is a recent open-source
approach for deploying lab environments with attacks and detec-
tion mechanisms in place. Although deployment instructions and
scripts are freely available, a commercial license is needed to de-
ploy the labs to Azure. Furthermore, there is no automation for
benign or malicious activity, which contradicts the requirement of
determinism for generated artifacts.

Skopik et al. [57] focus on realistic emulation of users interacting
with an exemplary web application. They mix generated legitimate
activity with manually performed cyberattacks to attain more re-
alistic log data. However, the system’s source code is not publicly
available and no self-tests are included. Finally, Landauer et al. [27]
introduce the concept of a model-driven testbed generator, together
with an implementation for web applications. They do provide a
dataset created using the testbed, but neither the testbed nor its
generator are publicly available, and hence, our requirements are
not met. Furthermore, deterministic activity in dataset generation
is briefly discussed, but not evaluated.

Our analysis shows that existing testbeds only insufficiently
fulfill the requirements for artifact generation, especially w.r.t. the
generation of log data: While several testbeds emulate real-world
scenarios and provide scripted/deterministic activity, none of them
are designed with a focus on reproducibility and adaptability, i.e.,
none is available as open source software to other researchers, runs
on commodity hardware, and provides features to ease reproduction
and extension such as infrastructure as code and self-tests.

If the primary goal of a testbed is to generate network traffic
instead of log data, there are approaches that fulfill at least most
of our criteria for artifact generation: Handigol et al. [18] exam-
ine the reproducibility of networking experiments with a focus
on container-based emulation. Wright et al. [72] discuss general
requirements for reproducible realistic user emulation and present
a model of users interacting with a graphical interface. Notable
simulators with a focus on network cybersecurity and especially
attack simulation include ADVISE [29], NeSSi2 [17], andMASS [41].
However, the high level of realism and detail required for gener-
ating meaningful cybersecurity log data artifacts paired with the
inherent need of reproducibility and adaptability necessitates a
testbed specifically designed for these purposes.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Rafael Uetz, Christian Hemminghaus, Louis Hackländer, Philipp Schlipper, and Martin Henze

Internet

Network Zone
"Internet"

Network Zone "DMZ"

Network Zone "Internal"

Attacker

Internet
Router

DMZ Server

Internal Server

Client 1-N (running user emulation) Log Server

. . .

Company Router

Figure 2: SOCBED emulates a small company network includ-
ing benign user activity as well as multi-step cyberattacks in
a reproducible and adaptable manner to facilitate sound log
data generation.

5 SOCBED: REPRODUCIBLE AND ADAPTABLE
LOG DATA GENERATION

To address the pressing need for a testbed particularly targeting
the generation of reproducible and adaptable log data as founda-
tion for sound cybersecurity experiments, we present the design
and implementation of SOCBED, our Self-contained Open-source
Cyberattack experimentation testBED. The focus of SOCBED lies
on the generation of sound log datasets for intrusion detection re-
search, i.e., log data that are realistic, transparent, adaptable, replica-
ble, and publicly available. To this end, SOCBED emulates a typical
company network including benign user activity and an adversary
acting from the Internet or inside the company’s infrastructure.
As such, SOCBED is the first proof-of-concept testbed with the
goal of fostering reproducible and adaptable log data generation,
thus allowing researchers to reuse or adapt existing scenarios for
novel experiments to achieve better comparability of results and
avoid the unnecessary effort of building new testbeds from scratch.
Most importantly, SOCBED thereby lays the foundation for long-
ranging, usable log datasets fostering sound cybersecurity research
by allowing frequent updates and modifications through various
groups of researchers. In the following, we describe in more detail
SOCBED’s emulated company network (Section 5.1), infrastructure
(Section 5.2), generation of log data (Section 5.3), and measures im-
plemented to ensure reproducibility and adaptability (Section 5.4).

5.1 Systems and Network Topology
SOCBED’s network topology, resembling a typical company net-
work, is built of seven different types of base systems, as depicted
in Figure 2. Five of those system types mimic a small company

network (Client, Internal Server, Log Server, Company Router, and
DMZ Server) and are placed inside an internal network zone and a
demilitarized zone (DMZ). The other two types (Attacker and In-
ternet Router) reside outside the company network. Client systems
can be duplicated automatically as needed and simulate benign
user activity such as browsing the Internet and exchanging mails.
The Attacker system allows to run multi-step attacks that target
company network systems and incorporate lateral movement, e.g.,
phishing a Client to visit a malicious website, escalating privileges
on their machine, and exfiltrating sensible documents from another
Client using that expanded access. A dedicated Log Server system
collects, processes, and stores log data from all relevant sources
within the company network. Generated log datasets can be ana-
lyzed directly on the Log Server using state-of-the-art visualization
tools such as Kibana or exported for persistent offline use.

5.2 Testbed Infrastructure
In general, a testbed can be realized using different types of in-
frastructure such as physical machines, virtual machines (VMs), or
containers. For our proof-of-concept implementation of SOCBED,
we specifically decided to use VMs for the following reasons: Physi-
cal machines are costly to operate and duplicate, which contradicts
reproducibility. Containers do not allow access to the underlying
operating system for the purpose of attack execution (e.g., kernel ex-
ploits) and log data collection, hence impeding realism. In contrast,
VMs are easy to operate and duplicate, as well as able to produce
realistic log data on operating system level. Furthermore, setup and
control of VMs is comparatively simple, making it possible to scale
the underlying network for experimentation needs.

When building a VM-based testbed, VMs can be either self-
hosted (i.e., on own hardware) or provided as a cloud service (such
as Microsoft Azure). The latter option has potential drawbacks on
the reproducibility of experiments as the service provider might
make changes to VMs or periphery (e.g., unavailability of older
OS versions). Additionally, such services are usually charged, con-
tradicting our goal of reproducibility for as many researchers as
possible. According to our requirements, we chose to implement
SOCBED’s infrastructure using the open-source hypervisor Virtual-
Box. The minimum host system requirements for basic experiments
using SOCBED’s base systems and network topology (cf. Section 5.1)
are 16GB of RAM, 30GB of SSD space, and a multi-core CPU with
hardware-assisted virtualization. These rather modest requirements
make it possible to run SOCBED even on most modern laptops,
thus enabling a majority of researchers and students to use it.

5.3 Log Data Generation
To adequately generate log data as found in a real company net-
work under attack, SOCBED needs to implement common assets
such as operating systems, services, and applications as well as an
emulation of the activities of benign users and an adversary.

Realistic Assets. To ensure a high degree of realism, systems in
SOCBED utilize operating systems, services, and applications as
typically used in company networks. We chose to let the client
systems run Windows, as it is the most common operating system
for desktop and notebook computers in company networks [44]. All
other systems run Linux, which is a common choice for servers and

Reproducible and Adaptable Log Data Generation for Sound Cybersecurity Experiments ACSAC ’21, December 6–10, 2021, Virtual Event, USA

results in a smaller memory footprint of SOCBED as compared to
Windows. The servers run common services such as a web server,
mail server, and domain controller. A detailed listing of operating
systems, services, and their purpose is shown in Appendix A.

User Emulation. Client systems run a user emulation to generate
a “noise floor” of benign activity in the log data. The user emulation
is implemented as an agent running on all clients, which executes
individual modules concurrently. Its actions are logged locally. To
this end, we implemented modules for web surfing, exchanging
emails, and manipulating files. The implementation of the mod-
ules is based on configurable, seeded finite-state machines, which
facilitates deterministic activity (detailed in Section 5.4).

We chose to implement web and email as they are by far the
most frequent delivery methods for malware [70]. The web surf-
ing module alternates periods of active web browsing sessions
and prolonged periods of inactivity. A Firefox browser window
is opened at the start of each session and closed afterwards. It is
remote-controlled using the Selenium framework. During a session,
so-called routines are executed until the session is over. Each routine
starts with either performing a web search on Google or opening
a known web page directly. The search terms and web pages are
chosen from configurable lists. When the web page has loaded,
random links on the web page are followed with random delays in
between. Relevant parameters and distributions are modeled after
published statistics of real users’ web surfing activity [46].

For the emailing module, each client has an account on the mail
server, which is running on the DMZ Server VM. The inbox is regu-
larly checked by the module. If a received email contains hyperlinks
or attachments, they are opened automatically, facilitating phishing
attacks. Emails are also created and sent randomly by the module.
The recipient is either another client or an external address, which
replies to each incoming email with a slightly modified message.

File manipulation was implemented to increase the volume and
variety of endpoint log data. Thismodule simulates basic file activity
in a specified folder. Per iteration, a random filename and action
(create, delete, append, read, move, and copy) are executed.

Supplementary custom user activity modules, e.g., videoconfer-
encing emulation, can be added using a Python interface. Depending
on the specific use case, the implemented user activity can also be
exchanged by a more sophisticated, but possibly less deterministic
software such as DETERLab’s DASH [5, 26].

Adversary Emulation. To replicate realistic attacks on company
networks, SOCBED allows to run multi-step attacks that comprise
entire kill chains [22], e.g., from a phishing email up to the exfiltra-
tion of confidential data. The attack steps are implemented using
common security tools (e.g., Metasploit, mimikatz, sqlmap) as well
as benign tools or commands often employed by adversaries (e.g.,
PowerShell, xcopy, reg). To choose an initial set of attack steps, we
sighted publications on tactics, techniques, and procedures used
by adversaries in successful network breaches, including academic
research [7, 19, 73], reports focusing on breach statistics [34, 61, 70],
and reports on Advanced Persistent Threat campaigns [16, 23, 54] as
well as the MITRE ATT&CK Enterprise tactics and techniques [64].
Currently implemented attack steps cover at least one attack step
for each tactic of the ATT&CK Matrix for Enterprise [64]. A full
list of implemented attack steps is shown in Appendix B.

misc_sqlmap

misc_exfiltration

misc_set_autostartmisc_execute_malware

c2_exfiltrationc2_download_malwaremisc_download_malware

c2_mimikatz c2_take_screenshot

infect_email_exe infect_flashdrive_exe

Figure 3: SOCBED can generate and execute pseudo-random
multi-step cyberattacks from the implemented attack steps
using a customizable digraph that models prerequisites.

SOCBED is self-contained in the sense that all cyberattacks (as
well as benign activity) are fitted to the simulated company net-
work, which is a significant advantage over stand-alone adversary
emulation tools such as CALDERA [1], which are not fitted to a
specific environment and thus are either restricted to rather simple
post-exploitation steps (e.g., running local PowerShell commands)
or require a lot of initial configuration to work.

As in reality, some attack steps can only execute successfully
if prerequisite attack steps were executed against the same target
beforehand. In particular, there are several attack steps that use
a command-and-control (C2) channel, which first has to be estab-
lished by initial attack steps. We model these dependencies with a
digraph (see Figure 3) and allow to pseudo-randomly generate valid
attack chains as an alternative to fixed, scripted attacks. Analogue
to the user emulation, generated attack chains solely depend on a
configurable seed and are hence replicable (detailed in Section 5.4).

Cyberattacks in the real world change over time and observed
campaigns reveal new attack techniques. Therefore, SOCBED’s
modular adversary emulation can be adjusted to recreate different
attack chains and be extended by new atomic attack steps, so-called
attack modules, using a simple Python interface. Consequently,
SOCBED can be used for both external and internal adversary
models although the main focus of currently implemented modules
lies on an attacker operating from the Internet.

Logging. The main purpose of adversary and user emulation
in SOCBED is to generate realistic log data that can be used for
intrusion detection research. We therefore chose log data sources
and their configuration according to best practices in productive
company networks [2, 11, 24]. Consequently, log data are collected
from operating systems, services, and dedicated security software
as depicted in Figure 4. The Windows clients can be configured to
run Microsoft Sysmon and Elastic Auditbeat to capture advanced
audit and security log data. Windows Event Logs are collected and
forwarded to the dedicated Log Server by an Elastic Winlogbeat
agent. The Linux machines within the simulated company net-
work forward all syslogs (including firewall and proxy logs) to the
Log Server. The Company Router additionally runs Suricata and
Packetbeat and forwards their log data as well.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Rafael Uetz, Christian Hemminghaus, Louis Hackländer, Philipp Schlipper, and Martin Henze
C

lie
n

t
D

M
Z

S
e

rv
e

r

Log ServerWindows Kernel

Windows Services

Sysmon

PowerShell
Auditbeat

Winlogbeat

Linux Kernel

Default Services

Apache httpd

Postfix & Dovecot

Rsyslog

Linux Kernel

Default Services

Samba

Linux Kernel

Default Services

IPFire Firewall

Suricata

Rsyslog

Packetbeat

Rsyslog

Kibana

Logstash

Elasticsearch

Apache Spark

Apache Kafka

C
om

pa
n

y
R

ou
te

r
In

te
rn

al
S

er
ve

r

Figure 4: SOCBED collects, processes, and stores log data from best-practice sources on a dedicated log server.

The dedicated Log Server allows SOCBED users to easily search
and visualize various log data from the machines in the company
network. It runs Elastic Logstash, Elasticsearch, and Kibana to
collect, store, search, and visualize log data. Additionally, log data
can be exported in JSON format using the Elasticsearch API or the
tool Elasticdump. This allows to freeze generated log datasets and
make them available to other researchers.

Network Traffic. Although the focus of SOCBED lies on host-
based log data, network traffic can be captured as well, e.g., by
running the tool tcpdump on the Company Router. Generated and
recorded traffic can then be analyzed or replayed in subsequent
sessions using standard tools such as Tcpreplay. This setup enables
strictly reproducible experiments that are based on the contents of
network traffic, e.g., for NIDS evaluation.

Additionally, network flows and numerous higher-level events
such as HTTP requests are captured and logged by a Packetbeat
agent on the Company Router. These logs are forwarded and stored
on the log server in the same way as described for system logs
above, thus enabling a straightforward analysis of network-based
activity such as benign user activity or traffic caused by attacks.

5.4 Reproducibility and Adaptability
The overarching goal of SOCBED is to showcase the feasibility of
generating reproducible and adaptable log datasets. To achieve this
goal, we implemented all log-generating assets and their actions in
a way that allows for deterministic activity and controlled adapta-
tions, especially by relying on infrastructure-as-code, determinism
of emulation, and self-tests as detailed in the following.

Infrastructure as Code. To ensure a high level of transparency, the
initial setup of all VMs is performed using infrastructure-as-code
(IaC) methods. More specifically, we use Packer and Ansible scripts
to create, install, and configure all VMs automatically without user
interaction. Operating system images and additional software are
automatically downloaded from the Internet and then installed
and configured on the target VMs. To avoid unintended changes
in behavior, all software components are pinned to specific ver-
sions. As SOCBED scenarios are fully defined by code, a version
control system can be used to make all changes transparent and
revertible, which promotes adaptability. This approach also ensures
reproducibility because different users can build the same testbed
from scratch running the provided setup scripts.

Emulation Determinism. Targeting determinism in emulation,
we perform all activity of the user and attack emulation either
scripted or pseudo-randomly with a configurable seed. To this end,
sequences of actions are generated based on finite-state machines
and are logged for post-experiment investigation. Furthermore,
each client incorporates its ID into its seed, such that it behaves
differently from the others but equally on each testbed run, thus
making user emulation replicable. The user emulation can retrieve
websites from the Internet (for better realism) or from a web server
within the simulated network (for better reproducibility).

Self-Tests. SOCBED targets to realize replicable log data genera-
tion and provide easy adaptability. Consequently, researchers using
SOCBED need to be able to verify that their testbed instances are
working as intended both after initial installation and after making
changes. To this end, we provide a large number of unit and system
tests, which can be executed automatically using a test runner. Unit
tests check single functions for correct return values while system
tests start all VMs and verify functionality of the running testbed.
More specifically, the system tests verify correct setup of VMs, exe-
cution of cyberattacks, logging, and time synchronization. It is also
possible to set up a continuous integration pipeline that rebuilds
the testbed regularly (e.g., every night) and runs all tests. Conse-
quently, as part of our efforts for reproducibility and adaptability,
our self-tests ensure correct functionality of a SOCBED setup.

Overall, by realistically reassembling a typical company network,
all involved systems and assets, as well as benign user activity and
adversarial actions, SOCBED provides a proof-of-concept for gen-
erating realistic log data for cybersecurity experiments. Specifically
focusing on generating reproducible and adaptable log datasets,
SOCBED lays the foundation for other researchers to reproduce
testbed setups on commodity computers, adapt testbed setups ac-
cording to the requirements of their own research efforts, and verify
the correct functionality of reproduced or adapted testbeds.

6 EVALUATION
Sound cybersecurity experiments should be valid, controlled, and
reproducible (cf. Section 3.1), which imposes requirements on the
used artifacts such as log data (cf. Section 3.2) and consequently the
testbed used for generating these artifacts (cf. Section 3.3). To fulfill
these requirements for generating log data artifacts and thus lay
the foundation for sound cybersecurity experiments, we proposed
our proof-of-concept testbed SOCBED (cf. Section 5).

Reproducible and Adaptable Log Data Generation for Sound Cybersecurity Experiments ACSAC ’21, December 6–10, 2021, Virtual Event, USA

In the following, we exemplarily show that it is indeed possible
to perform a practical, sound experiment with log data generated by
SOCBED. We introduce the basic idea of this exemplary experiment
(Section 6.1) and describe its technical setup (Sections 6.2 and 6.3).
We then present its results (Section 6.4) and analyze them with
respect to reproducibility, controllability, and validity (Section 6.5).

6.1 Methodology
To demonstrate SOCBED’s suitability for sound cybersecurity ex-
periments, we chose an exemplary practical experiment from the
field of cyberattack detection using log data and network traffic.
More specifically, we simulate a common multi-step intrusion of
an enterprise network, a topic of high practical relevance (cf. Sec-
tion 1), to determine how well it can be detected with commodity
detection software. To design a concrete experiment, we narrow
this research question down and formulate a hypothesis that can
be tested with an experiment.

As repeatedly claimed by security experts, the default logging
configuration of a modernWindows system omits numerous events
that can be helpful for attack detection [2]. Therefore, we decided
to design an experiment to analyze whether attack detection indeed
improves when switching to a best-practice logging configuration.
More precisely, our hypothesis is that when switching from the
default to a best-practice configuration, more steps of an exemplary
multi-step cyberattack will be detected. By detection, we refer to at
least one alert being raised as a consequence of the attack step1.

To test this hypothesis, we use SOCBED to recreate a small com-
pany network and launch a scripted multi-step attack against it. We
also run commodity detection software and count the true positive
alerts, both with the default and best-practice logging configura-
tion. To prove that our experiment is reproducible, we automatically
build SOCBED instances on two commodity computers, run several
repetitions of the two scenarios on each of them, and then analyze
the results. To prove that the experiment is controlled, we show
that changing a variable (here: the logging configuration) does not
lead to unexpected side effects and thus allows to analyze the cause-
effect-relationship of the change. To show validity, we argue why
the experiment results are reliable (internal validity) and can be
generalized to real-world applications (external validity).

6.2 Exemplary Multi-Step Cyberattack
As a concrete cyberattack, we chose a multi-step cyber espionage
kill chain [22], as it is often executed by state-sponsored adver-
saries [64]. We chose this type of attack because its detection is
usually difficult as opposed to attacks with an obvious impact such
as ransomware [15]. The attack is composed of a subset of the at-
tack modules currently implemented in SOCBED (cf. Section 5 and
Appendix B) and comprises the following steps: (1) An attacker
probes a publicly-accessible web server of a victim company and
uses SQL vulnerabilities to retrieve contact information and further
details about some employees. (2) The attacker then sends a targeted
email containing a malicious attachment to an employee. (3) Upon
reception, the employee opens the attachment, thereby running a

1In our opinion, this is a more practical metric than the total number of alerts because
some attack steps yield high numbers of alerts (e.g., vulnerability scans) while others
might raise only one (e.g., execution of a malicious file).

remote access tool that establishes a HTTP-based command-and-
control (C2) connection to the attacker. The attacker uses the re-
mote access tool to (4) capture the screen of the user and (5) retrieve
cached credentials of a domain administrator using a privilege esca-
lation. (6) Using these credentials, the attacker searches for another
computer in the network containing interesting documents (lat-
eral movement). These documents are then downloaded via the C2
channel. Finally, the attacker (7) uploads a custom backdoor pro-
gram, (8) adds an autostart registry key, and (9) starts the backdoor
program to ensure access at a later point in time.

6.3 Testbed Setup and Log Analysis
The topology and systems for this simulation correspond to SOC-
BED’s default setup, as depicted in Figure 2 of Section 5, with three
client machines running. As for detection tools, we decided to use
two widespread open-source tools: Sigma rules from the official
repository [56] for log data-based detection and Suricata [45] with
Emerging Threat rules [48] for network-based detection.

We built a SOCBED instance from scratch (i.e., the infrastructure-
as-code scripts created, configured, and snapshotted all virtual
machines) on two notebook computers (Dell Latitude 5501 running
Ubuntu 20.04 and MacBook Pro 15" Mid 2015 running macOS 10.15),
each equipped with an Intel Core i7 CPU, 16GB of RAM, and an
SSD. For the second scenario, theWindows client was rebuilt with a
best-practice logging configuration [2], which mainly differs in the
installation of Microsoft Sysmon [53] and the activation of verbose
PowerShell logging. On each of the two machines, we ran ten
iterations of the two scenarios described above, respectively, thus
resulting in a total of 40 iterations. Each iteration starts with booting
all machines from their initial snapshots. After 15 minutes, the
described attack is launched, with three minutes idle time between
the attack steps. After 60 minutes, log data are downloaded from the
machines via the Elasticsearch API, then the machines are powered
off and reset to their initial state.

The downloaded log data consist of Windows Event Logs from
the client machines and syslogs from the Linux machines. For our
analysis, we extracted the Suricata alerts from the syslogs and ap-
plied all suitable Sigma rules to the Windows logs. We discarded
irrelevant or false Sigma and Suricata alerts (e.g., Windows report-
ing usage statistics to Microsoft servers) for further analysis, thus
keeping only the alerts that were caused by the attack. Finally, we
categorized these alerts by the attack step triggering them.

6.4 Results of the Exemplary Experiment
The goal of our exemplary experiment was to test the hypothesis
that the number of detected attack steps is higher when the best-
practice logging configuration is used (as compared to the default
configuration). Table 2 shows the sample means and standard devi-
ations of the true positive alerts and the number of detected attack
steps over all iterations (𝑛 = 10) on both hosts for the default (𝑥𝑑 , 𝑠𝑑)
and best-practice (𝑥𝑏 , 𝑠𝑏) configuration (Host 2 in gray, differences
between the hosts in boldface). For brevity, we pooled Suricata and
Sigma alerts. The detailed results are shown in Appendix C.

We can see that four attack steps were detected in all iterations
with the default configuration and six in all iterations with the best-
practice configuration. All standard deviations for the number of

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Rafael Uetz, Christian Hemminghaus, Louis Hackländer, Philipp Schlipper, and Martin Henze

Table 2: We performed an exemplary experiment comprising
a multi-step cyberattack ten times on two hosts. The results
are consistent across all runs, thus showing that SOCBED
facilitates reproducible and adaptable log data generation.

Attack step Number of alerts
𝑥𝑑 𝑠𝑑 𝑥𝑏 𝑠𝑏

(1) Scan and exploit web server 124.4 0.699 124.1 1.595
124.6 0.699 124.4 0.516

(2) Send email with malware 2 0 2 0
2 0 2 0

(3) Open malicious attachment 5.7 0.483 5.7 0.483
5.9 0.316 5.9 0.316

(4) Capture screen 0 0 0 0
0 0 0 0

(5) Collect cached credentials 0 0 1 0
0 0 1 0

(6) Search network & download files 0 0 0 0
0 0 0 0

(7) Download custom backdoor 3 0 7 0
3 0 7 0

(8) Set autostart for backdoor 0 0 2 0
0 0 2 0

(9) Execute backdoor 0 0 0 0
0 0 0 0

Number of detected attack steps 4 0 6 0
4 0 6 0

detected attack steps are zero, so there is no evidence to reject our
hypothesis (the deviations in the number of alerts are discussed in
Section 6.6). We can therefore accept our hypothesis and conclude
that indeed more attack steps are detected with the best-practice
configuration as compared to the default configuration.

However, this does not necessarily imply causality: The higher
number of alerts could be caused by unintended side effects of
the configuration change, i.e., uncontrolled behavior. The experi-
ment could also have fundamental design flaws, which might be
discovered by other researchers when reproducing the experiment.
Furthermore, the results are not necessarily valid for real-world
use cases. These potential concerns illustrate the importance of an
experiment to be valid, controlled, and reproducible.

6.5 Soundness of the Experiment
SOCBED was specifically designed for the generation of sound
artifacts for log data research. Here, we discuss how its properties
support this task and thus ultimately help to make our exemplary
experiment reproducible, controlled, and valid.

Reproducibility. We have shown that the experiment can be per-
formed on different machines and still leads to the same outcome,
i.e., accepting the initial hypothesis. Furthermore, the same experi-
ment can easily be performed by other researchers because SOC-
BED is available as open-source software and runs on commodity
hardware. There are also no confidentiality or privacy restrictions
concerning the log dataset, so it can be freely used as well. Thus,
we conclude that the experiment is indeed reproducible.

However, this does not imply that each iteration of our experi-
ment (and thus SOCBED) produces the exact same log data (high-
lighted by the differences for attack steps (1) and (3) in Table 2).
Such differences result from an inherent trade-off between realism
and replicability when using virtual machines for log data genera-
tion and can be attributed to different effects such as background
processes and time-dependent tasks [27, 57]. We further analyze the
impact of such variations in Section 6.6 and discuss resulting limita-
tions in Section 7. The important message here is that reproducible
experiments need to be designed such that they are robust against
intra- and inter-host variations (just as in productive networks).

Controllability. Our experiment has only one variable that is
intentionally changed between runs: the Windows logging config-
uration. SOCBED’s infrastructure-as-code setup allows for trans-
parent configuration changes and ensures that there are no further
unintentional changes. Built-in self-tests additionally help to verify
that the functionality is not impaired by a change. Furthermore,
automated runs ensure deterministic user and adversary activity.

To confirm that the experiment is truly controlled with respect
to the configuration change, we analyzed all alerts in detail. We
verified that (1) the alert types raised by the best-practice runs are
a superset of the alerts with the default runs and (2) the additional
best-practice alerts were truly caused by the configuration change.
Both can be easily verified, as the default configuration yields no
Sigma alerts at all, which is expected as Sigma heavily builds on
Sysmon as an event source. The Suricata alerts, on the other hand,
are not affected by the configuration change. We provide more
details on the types and numbers of alerts in Appendix C.

Validity. Due to the transparent infrastructure-as-code build,
deterministic activity, and implemented self-tests, we have a high
confidence that the testbed behaves as expected. This is confirmed
by the steady results over the different iterations. We thus have no
indication of a flawed internal validity of the experiment.

A more difficult question to answer is whether the experiment
is externally valid, i.e., if its conclusion can be generalized and
transferred to the real world. We have insights into large enter-
prise networks with tens of thousands of systems that utilize the
same components as our scenario (Windows 10, Sysmon, Sigma,
and Suricata). Even though we could not perform the exact same
experiment in a productive network due to the risk that comes
with the involved vulnerability scanning and malware execution,
we are still convinced that it is indeed externally valid because all
entities (operating systems, detection systems) are commonly used
in practice and would thus generate similar alerts. However, this
does not necessarily mean that performing our exemplary attack
against such a network would yield the exact same alerts, e.g., due to
different versions of detection rules. Nevertheless, the experiment
can serve as an indicator as to whether the analyzed configuration
change should be considered in an enterprise network.

Finally, we would like to note that external validity is not a
property of a testbed per se, as every testbed fails to recreate at
least some properties of real-world productive systems. Instead,
external validity has to be considered for each specific experiment
performed using a certain testbed. Consequently, we can also think
of experiments performed using SOCBED that would likely yield
invalid results, e.g., evaluating anomaly detection methods that

Reproducible and Adaptable Log Data Generation for Sound Cybersecurity Experiments ACSAC ’21, December 6–10, 2021, Virtual Event, USA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Windows event types (sorted by total occurrences)

10
1

10
2

10
3

ev
en

ts
 p

er
 it

er
at

io
n

(n
=1

0)

Host 1
Host 2

Figure 5: In contrast to the consistent log data caused by the
attacks, the “noise floor” of operating system logs shows
notable differences between the runs, even though VMs are
started from the same snapshots and all activity is scripted.
This is common operating system behavior and must be con-
sidered when designing experiments.

require a huge variety in user activity to function properly. How-
ever, a notable advantage of SOCBED over fixed datasets is that
researchers can adapt individual parts of the testbed to make their
experiments valid.

6.6 Deep Dive: Variations in Log Data
While we have shown that our exemplary experiment is repro-
ducible, this does not imply that each iteration of SOCBED gener-
ates the exact same set of log data. Various factors such as back-
ground processes and time-dependent tasks influence the generated
log data, resulting in variations between iterations and, possibly,
also host computers [27, 57]. This is an unavoidable trade-off be-
tween realism and replicability when generating log data using
real systems. In the following, we analyze variations in the log
data generated during our experiment in more detail and particu-
larly quantify differences between the two hosts. To the best of our
knowledge, this important issue has never been examined before.

Table 2 shows that attack steps (1) and (3) exhibit variations in
the number of alerts. These variations are caused by a different
number of occurrence of two Suricata alerts (cf. Appendix C). The
first one is raised during the SQL injection attack and the second
one shortly after execution of the email attachment, when the
shellcode is downloaded [40]. We were able to manually reproduce
these differences on both hosts, so they indeed occur and are not a
flaw of the analysis process. Still, we wanted to check whether the
mean number of alerts differs between the two hosts. To do this, we
performed a two-tailed two-sample unpaired Welch’s t-test [36, 62]
for the two differing alerts, which required us to run additional
iterations of the triggering attack steps to obtain significant (𝛼 =

0.05) results. Indeed, we found that for both alerts, we had to reject
the test’s null hypothesis that the mean number is equal on both
hosts (p-values 0.000392 and 0.00251, respectively). We suppose
that the variations were caused by slight performance differences
between iterations and hosts that resulted in a different rate of
dropped packets (Suricata reported drop rates of 0.001-0.3 %).

Furthermore, we also took a closer look at the log data “noise
floor”, i.e., data that are not (primarily) caused by the attacks. To give
an idea of these variations, we analyzed the number of occurrences
of eachWindows event type (defined by the combination of provider
name and ID) over all iterations. Figure 5 shows the 20most frequent
of the 138 total event types for the default configuration on the
two hosts (legend in Appendix C). The plot for the best practice
configuration (not shown) looks similar except for several Sysmon
events in the top 20 types (172 types in total). We can see significant
variations between runs for certain event types, but no striking
differences between the two hosts.

In conclusion, our analysis of the Suricata alerts and Windows
Event Log types shows that statistical variations between iterations
and hosts indeed occur and should be anticipated. Experiment
designers should keep this in mind and perform evaluations that are
robust to such intra- and inter-host variations. This fact once again
emphasizes the importance of soundly controlled and reproducible
experiments so that variations caused by uncontrolled variables or
non-deterministic activity can be ruled out in the analysis.

Summarizing the whole evaluation, our exemplary experiment of
detecting a common multi-step intrusion of an enterprise network
has shown that it is indeed possible to perform valid, controlled, and
reproducible cybersecurity experiments based on log data generated
with SOCBED, thus fostering research that can be built upon.

7 DISCUSSION AND LIMITATIONS
In this paper, we have proposed SOCBED, an open-source, virtual
machine (VM)-based testbed designed with reproducibility and
adaptability in mind that addresses several problems of current
approaches and enables researchers to conduct sound experiments.
However, every design decision also comes with potential limita-
tions. In the following, based on our experiences while designing,
implementing, and evaluating SOCBED, we share lessons learned,
discuss trade-offs, and identify further use cases for SOCBED.

To begin with, emulating a real-world scenario may imply trade-
offs with regard to reproducibility. For example, most operating
systems regularly check for updates and some even download them
automatically, thus making log data and network traffic depend on
the time of day and the availability of updates. If the reproducibility
of an experiment is impeded by such variations, Internet access
should be disabled (but otherwise enabled for better realism).

Another requirement for reproducibility is the execution of deter-
ministic activity. Yet, some experiments might comprise activity of a
human adversary or user and depend on their exact timing (e.g., for
anomaly detection). In this case, we recommend to record the activ-
ity and replay it using a script to ensure reproducibility. Likewise,
for certain experiments a strong degree of determinism in network
activity might be required, e.g., for an evaluation of time-based SQL
attacks. To this end, SOCBED already provides the infrastructure to
retrieve websites from within the simulated network to strengthen
reproducibility (cf. Section 5.4). If an experiment requires an even
higher degree of determinism in network activity, SOCBED’s mod-
ular approach allows to extend it with a man-in-the-middle proxy
(e.g., mitmproxy [38]), including the capability of intercepting TLS
encrypted communication, to deterministically replay previously
recorded network traffic.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Rafael Uetz, Christian Hemminghaus, Louis Hackländer, Philipp Schlipper, and Martin Henze

From a different perspective, while the open-source infrastructure-
as-code setup enables complete transparency and adaptability of a
testbed, it comes with the challenge of occasionally disappearing
software download links. We experienced a few cases where our
automatic daily builds of SOCBED broke because software reposito-
ries or URLs for downloading operating system images changed and
had to be updated in the SOCBED code. This might especially be an
issue when reproducing testbed versions that are several years old.
We therefore recommend to keep local copies of all downloaded
software and/or VM images if updating versions could impede the
conducted experiments.

Another trade-off of SOCBED results from the fact that it runs
on commodity hardware and uses virtual machines. In contrast to
simulations, VM-based testbeds run in realtime and may behave
slightly different depending on the host’s soft- and hardware (just
as physical systems). Our evaluation showed that even similar hosts
may lead to slight variations in generated log data. We thus suggest
to avoid running a testbed on hosts with scarce resources or back-
ground activity and to closely monitor indicators of performance
issues during experiments to avoid uncontrolled behavior.

From a similar perspective, SOCBED focuses on scenarios with
bounded scalability requirements to be able to provide a high level
of detail when emulating systems (i.e., full OS emulation), as re-
quired for realistic log generation. Here, SOCBED’s scalability is
primarily influenced by the number of virtual machines, not by
the complexity of the underlying network topology. Given this
design trade-off, very large-scale simulations requiring less realistic
emulation but striving for complex scenarios with thousands of
systems are out of scope for SOCBED. In such scenarios, approaches
producing large amounts of fake log data (e.g., flog [14]) might be a
better fit than SOCBED. For the scope of this paper, we deliberately
chose a small scenario with only few emulated systems which can
be executed on commodity hardware to ease reproducibility. Still,
outside the scope of this paper, we successfully scaled SOCBED to
execute experiments with more than a hundred realistically emu-
lated systems using a proprietary hypervisor running on dedicated
hardware (VMware ESXi).

Finally, built-in self-tests demand additional effort during devel-
opment. Yet, we found them to be extremely valuable for discover-
ing errors when installing SOCBED on a new host or adapting it
on an existing host. Tests are an established best practice in soft-
ware development [33] and we also strongly recommend to use and
maintain them when using SOCBED or developing other testbeds.

8 CONCLUSION
Various fields of cybersecurity research base their evaluations on
artifacts (e.g., log data or network traffic) that are either not publicly
available or are generated using proprietary testbeds, thus heavily
restricting reproducibility of their findings. Furthermore, other
researchers struggle to build on existing work because they cannot
adapt existing artifact datasets for their purposes, e.g, by re-running
a scenario with different attacks, other software versions, or a
changed logging configuration. Likewise, fixed datasets can lead to
invalid conclusions as researchers using them might not be able to
assess the appropriateness of a dataset for their own use cases due
to a lack of transparency in artifact generation.

To address this issue, in this work, we started by deriving re-
quirements for generating artifacts for cybersecurity experiments
that are realistic, transparent, adaptable, replicable, and publicly
available. Based on these requirements, we argued that artifact gen-
eration for scientific experiments should be performedwith testbeds
that are specifically designed with a focus on reproducibility and
adaptability. As a proof-of-concept implementation, we presented
SOCBED, an open-source testbed specifically targeting the genera-
tion of realistic log data for cybersecurity experiments that runs on
commodity hardware. To the best of our knowledge, SOCBED is the
first testbed for log data generation that is specifically designed to
foster reproducibility and adaptability, which is achieved through
measures such as infrastructure as code, deterministic activity, and
comprehensive self-tests.

To evaluate the reproducibility and adaptability of log data gen-
erated by SOCBED, we performed an exemplary, practical experi-
ment from the domain of intrusion detection and showed that, even
though log data naturally exhibit some variation between runs, the
experiment itself is reproducible on different computers and adapta-
tions can be performed in a controlled way. We make the evaluation
scripts and generated log dataset publicly available [58, 66], thus
enabling others to fully reproduce our experiment.

In conclusion, our work paves the way for better reproducibility
in cybersecurity research, especially in the area of log data and in-
trusion detection research, and consequently increases the potential
to build future research efforts on existing work.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers and our shepherd
Evangelos Markatos for their valuable feedback and fruitful com-
ments. This work was supported by the German Federal Ministry
of Education and Research (BMBF) under grant no. 16KIS0342. The
authors of this paper are responsible for its content.

REFERENCES
[1] Andy Applebaum, Doug Miller, Blake Strom, Chris Korban, and Ross Wolf. 2016.

Intelligent, automated red team emulation. In Proceedings of the 32nd Annual
Conference on Computer Security Applications. ACM, 363–373.

[2] Australian Cyber Security Centre. 2020. Windows Event Logging and Forwarding.
Retrieved June 28, 2021 from https://www.cyber.gov.au/acsc/view-all-content/
publications/windows-event-logging-and-forwarding

[3] Vaibhav Bajpai, Anna Brunstrom, Anja Feldmann, Wolfgang Kellerer, Aiko Pras,
Henning Schulzrinne, Georgios Smaragdakis, Matthias Wählisch, and Klaus
Wehrle. 2019. The Dagstuhl Beginners Guide to Reproducibility for Experimental
Networking Research. SIGCOMM Comput. Commun. Rev. 49, 1 (2019), 24–30.

[4] Emilie Lundin Barse and Erland Jonsson. 2004. Extracting attack manifestations
to determine log data requirements for intrusion detection. In Proceedings of the
20th Annual Computer Security Applications Conference. ACM, 158–167.

[5] Terry Benzel. 2011. The science of cyber security experimentation: the DE-
TER project. In Proceedings of the 27th Annual Computer Security Applications
Conference. ACM, 137–148.

[6] Sandeep Bhatt, Pratyusa K Manadhata, and Loai Zomlot. 2014. The operational
role of security information and event management systems. IEEE Security &
Privacy 12, 5 (2014), 35–41.

[7] Leyla Bilge and Tudor Dumitras. 2012. Before we knew it: an empirical study of
zero-day attacks in the real world. In Proceedings of the 2012 ACM conference on
computer and communications security. ACM, 833–844.

[8] Stephen M. Blackburn, Amer Diwan, Matthias Hauswirth, Peter F. Sweeney,
José Nelson Amaral, Tim Brecht, Lubomír Bulej, Cliff Click, Lieven Eeckhout,
Sebastian Fischmeister, Daniel Frampton, Laurie J. Hendren, Michael Hind,
Antony L. Hosking, Richard E. Jones, Tomas Kalibera, Nathan Keynes, Nathaniel
Nystrom, and Andreas Zeller. 2016. The Truth, The Whole Truth, and Nothing
But the Truth: A Pragmatic Guide to Assessing Empirical Evaluations. ACM
Trans. Program. Lang. Syst. 38, 4 (2016). https://doi.org/10.1145/2983574

https://www.cyber.gov.au/acsc/view-all-content/publications/windows-event-logging-and-forwarding
https://www.cyber.gov.au/acsc/view-all-content/publications/windows-event-logging-and-forwarding
https://doi.org/10.1145/2983574

Reproducible and Adaptable Log Data Generation for Sound Cybersecurity Experiments ACSAC ’21, December 6–10, 2021, Virtual Event, USA

[9] Tom Bowen, Alex Poylisher, Constantin Serban, Ritu Chadha, Cho-Yu Jason
Chiang, and Lisa M Marvel. 2016. Enabling reproducible cyber research – four
labeled datasets. In 2016 IEEE Military Communications Conference. IEEE, 539–
544.

[10] Ritu Chadha, Thomas Bowen, Cho-Yu J Chiang, Yitzchak M Gottlieb, Alex
Poylisher, Angello Sapello, Constantin Serban, Shridatt Sugrim, Gary Walther,
Lisa MMarvel, et al. 2016. CyberVAN: A Cyber security Virtual Assured Network
testbed. In 2016 IEEE Military Communications Conference. IEEE, 1125–1130.

[11] Anton Chuvakin, Kevin Schmidt, and Chris Phillips. 2012. Logging and log
management: the authoritative guide to understanding the concepts surrounding
logging and log management. Syngress.

[12] Jon Davis and Shane Magrath. 2013. A Survey of Cyber Ranges and Testbeds.
Technical Report. Cyber and Electronic Warfare Division, Defence Science and
Technology Organisation, Australian Government Department of Defence.

[13] Bernard Ferguson, Anne Tall, and Denise Olsen. 2014. National Cyber Range
overview. In 2014 IEEE Military Communications Conference. IEEE, 123–128.

[14] flog contributors. 2020. mingrammer/flog: A fake log generator for common log
formats. Retrieved September 8, 2021 from https://github.com/mingrammer/flog

[15] Ivo Friedberg, Florian Skopik, Giuseppe Settanni, and Roman Fiedler. 2015. Com-
bating advanced persistent threats: From network event correlation to incident
detection. Computers & Security 48 (2015), 35–57. https://doi.org/10.1016/j.cose.
2014.09.006

[16] Sean Gallagher. 2014. Inside the “wiper” malware that brought Sony Pictures to
its knees [Update]. Retrieved June 28, 2021 from http://arstechnica.com/security/
2014/12/inside-the-wiper-malware-that-brought-sony-pictures-to-its-knees/

[17] Dennis Grunewald, Marco Lützenberger, Joël Chinnow, Rainer Bye, Karsten
Bsufka, and Sahin Albayrak. 2011. Agent-based Network Security Simulation
(Demonstration). In 10th International Conference on Autonomous Agents and
Multiagent Systems (AMAS 2011). International Foundation for Autonomous
Agents and Multiagent Systems, 1325–1326.

[18] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick
McKeown. 2012. Reproducible network experiments using container-based emu-
lation. In Proceedings of the 8th International Conference on Emerging Networking
Experiments and Technologies. ACM, 253–264.

[19] Seth Hardy, Masashi Crete-Nishihata, Katharine Kleemola, Adam Senft, Byron
Sonne, Greg Wiseman, Phillipa Gill, and Ronald J Deibert. 2014. Targeted threat
index: Characterizing and quantifying politically-motivated targeted malware.
In Proceedings of the 23rd USENIX Security Symposium. USENIX, 527–541.

[20] Brad Heath, Heather Timmons, and Peter Cooney. 2021. SolarWinds hack was
’largest and most sophisticated attack’ ever: Microsoft president. Retrieved June
28, 2021 from https://www.reuters.com/article/us-cyber-solarwinds-microsoft-
idUSKBN2AF03R

[21] Brian Hepburn and Hanne Andersen. 2021. Scientific Method (Stanford Encyclo-
pedia of Philosophy). Retrieved June 28, 2021 from https://plato.stanford.edu/
entries/scientific-method/

[22] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. 2011. Intelligence-
driven computer network defense informed by analysis of adversary campaigns
and intrusion kill chains. Leading Issues in InformationWarfare & Security Research
1 (2011), 80–106.

[23] Kaspersky. 2014. Energetic Bear – Crouching Yeti. Retrieved June 28,
2021 from https://media.kasperskycontenthub.com/wp-content/uploads/sites/
43/2018/03/08080817/EB-YetiJuly2014-Public.pdf

[24] Karen Kent and Murugiah Souppaya. 2006. NIST Special Publication 800-92:
Guide to Computer Security Log Management. Retrieved June 28, 2021 from
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-92.pdf

[25] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. 2019.
Survey of Intrusion Detection Systems: Techniques, Datasets and Challenges.
Cybersecurity 2, 1 (2019). https://doi.org/10.1186/s42400-019-0038-7

[26] Vijay Kothari, Jim Blythe, Sean W. Smith, and Ross Koppel. 2015. Measuring the
Security Impacts of Password Policies Using Cognitive Behavioral Agent-based
Modeling. In Proceedings of the 2015 Symposium and Bootcamp on the Science of
Security (HotSoS ’15). ACM, 13:1–13:9.

[27] Max Landauer, Florian Skopik, Markus Wurzenberger, Wolfgang Hotwagner, and
Andreas Rauber. 2021. Have it Your Way: Generating Customized Log Datasets
With a Model-Driven Simulation Testbed. IEEE Transactions on Reliability 70, 1
(2021), 402–415.

[28] Max Landauer, Florian Skopik, Markus Wurzenberger, and Andreas Rauber.
2020. System log clustering approaches for cyber security applications: A survey.
Computers & Security 92 (2020), 101739.

[29] Elizabeth LeMay, Michael D Ford, Ken Keefe, William H Sanders, and Carol
Muehrcke. 2011. Model-based security metrics using ADversary VIew Secu-
rity Evaluation (ADVISE). In Eighth International Conference on Quantitative
Evaluation of Systems. IEEE, 191–200.

[30] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and Kumar
Das. 2000. Analysis and Results of the 1999 DARPA Off-Line Intrusion Detection
Evaluation. In Recent Advances in Intrusion Detection, Hervé Debar, Ludovic Mé,
and S. Felix Wu (Eds.). Springer Berlin Heidelberg, 162–182.

[31] Chris Long. 2021. Detection Lab. Retrieved June 28, 2021 from https://github.
com/clong/DetectionLab

[32] Martin Maisey. 2014. Moving to analysis-led cyber-security. Network Security
2014, 5 (2014), 5–12.

[33] Robert C Martin. 2009. Clean code: a handbook of agile software craftsmanship.
Pearson Education.

[34] McAfee, Inc. 2015. Grand Theft Data—Data exfiltration study: Actors, tactics, and
detection. Retrieved June 28, 2021 from https://www.mcafee.com/enterprise/en-
us/assets/reports/rp-data-exfiltration.pdf

[35] Rose McDermott. 2011. Internal and external validity. Cambridge handbook of
experimental political science (2011), 27–40.

[36] J.H. McDonald. 2014. Handbook of Biological Statistics (3rd ed.). Retrieved June
28, 2021 from http://www.biostathandbook.com/twosamplettest.html

[37] Microsoft. 2021. SimuLand: Understand adversary tradecraft and improve detec-
tion strategies. Retrieved June 28, 2021 from https://github.com/Azure/SimuLand

[38] mitmproxy contributors. 2021. mitmproxy/mitmproxy: An interactive TLS-
capable intercepting HTTP proxy for penetration testers and software developers.
Retrieved September 8, 2021 from https://github.com/mitmproxy/mitmproxy

[39] Douglas C. Montgomery. 2017. Design and Analysis of Experiments. Wiley.
[40] H. D. Moore. 2011. Meterpreter HTTP/HTTPS Communication. Retrieved

June 28, 2021 from https://www.rapid7.com/blog/post/2011/06/29/meterpreter-
httphttps-communication/

[41] Stephen Moskal, Ben Wheeler, Derek Kreider, Michael E Kuhl, and Shanchieh Jay
Yang. 2014. Context model fusion for multistage network attack simulation. In
2014 IEEE Military Communications Conference. IEEE, 158–163.

[42] Nour Moustafa and Jill Slay. 2015. UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set). In 2015
Military Communications and Information Systems Conference (MilCIS). IEEE,
1–6.

[43] Pejman Najafi, Alexander Mühle, Wenzel Pünter, Feng Cheng, and Christoph
Meinel. 2019. MalRank: a measure of maliciousness in SIEM-based knowledge
graphs. In Proceedings of the 35th Annual Computer Security Applications Confer-
ence. ACM, 417–429.

[44] NetApplications.com. 2019. Operating System Market Share. Retrieved June 28,
2021 from https://netmarketshare.com/operating-system-market-share.aspx

[45] Open Information Security Foundation. [n. d.]. Suricata. Retrieved June 28, 2021
from https://suricata.io/

[46] Piotr Pauksztelo. 2014. Simulation of an Enterprise Network with Realistic User
Behavior. Master’s thesis. Institute of Computer Science, Universität Bonn.

[47] Sean Peisert andMatt Bishop. 2007. How to design computer security experiments.
In Fifth World Conference on Information Security Education. Springer, 141–148.

[48] Proofpoint Inc. [n. d.]. Proofpoint Emerging Threats Rules. Retrieved June 28,
2021 from https://rules.emergingthreats.net/

[49] Richard C Rich, Craig Leonard Brians, Jarol B Manheim, and Lars Willnat. 2018.
Empirical Political Analysis: International Edition. Routledge.

[50] Michael Richmond. 2005. ViSe: A virtual security testbed. Technical Report.
University of California, Santa Barbara.

[51] L. M. Rossey, R. K. Cunningham, D. J. Fried, J. C. Rabek, R. P. Lippmann, J. W.
Haines, and M. A. Zissman. 2002. LARIAT: Lincoln Adaptable Real-time Infor-
mation Assurance Testbed. In Proceedings of the 2002 IEEE Aerospace Conference,
Vol. 6. IEEE, 2671–2682.

[52] Kevin A Roundy, Acar Tamersoy, Michael Spertus, Michael Hart, Daniel Kats,
Matteo Dell’Amico, and Robert Scott. 2017. Smoke detector: cross-product intru-
sion detection with weak indicators. In Proceedings of the 33rd Annual Computer
Security Applications Conference. ACM, 200–211.

[53] Mark Russinovich and Thomas Garnier. 2021. Sysmon v13.22. Retrieved June
28, 2021 from https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

[54] Securelist. 2013. Red October. Detailed Malware Description. Retrieved June
28, 2021 from https://securelist.com/analysis/publications/36830/red-october-
detailed-malware-description-1-first-stage-of-attack/

[55] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. 2018. Toward
generating a new intrusion detection dataset and intrusion traffic characterization.
In Proceedings of the 4th International Conference on Information Systems Security
and Privacy (ICISSP 2018). SCITEPRESS.

[56] Sigma contributors. [n. d.]. SigmaHQ/sigma: Generic Signature Format for SIEM
Systems. Retrieved June 28, 2021 from https://github.com/SigmaHQ/sigma

[57] Florian Skopik, Giuseppe Settanni, Roman Fiedler, and Ivo Friedberg. 2014. Semi-
synthetic data set generation for security software evaluation. In 2014 Twelfth
Annual International Conference on Privacy, Security and Trust. IEEE, 156–163.

[58] SOCBED contributors. 2021. SOCBED: A Self-Contained Open-Source Cyber-
attack Experimentation Testbed. Retrieved September 9, 2021 from https:
//github.com/fkie-cad/socbed

[59] Cole Sodja, Justin Carroll, Melissa Turcotte, and Joshua Neil. 2021. Au-
tomating threat actor tracking: Understanding attacker behavior for
intelligence and contextual alerting. Retrieved June 28, 2021 from
https://www.microsoft.com/security/blog/2021/04/01/automating-threat-actor-
tracking-understanding-attacker-behavior-for-intelligence-and-contextual-
alerting/

https://github.com/mingrammer/flog
https://doi.org/10.1016/j.cose.2014.09.006
https://doi.org/10.1016/j.cose.2014.09.006
http://arstechnica.com/security/2014/12/inside-the-wiper-malware-that-brought-sony-pictures-to-its-knees/
http://arstechnica.com/security/2014/12/inside-the-wiper-malware-that-brought-sony-pictures-to-its-knees/
https://www.reuters.com/article/us-cyber-solarwinds-microsoft-idUSKBN2AF03R
https://www.reuters.com/article/us-cyber-solarwinds-microsoft-idUSKBN2AF03R
https://plato.stanford.edu/entries/scientific-method/
https://plato.stanford.edu/entries/scientific-method/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08080817/EB-YetiJuly2014-Public.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08080817/EB-YetiJuly2014-Public.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-92.pdf
https://doi.org/10.1186/s42400-019-0038-7
https://github.com/clong/DetectionLab
https://github.com/clong/DetectionLab
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-data-exfiltration.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-data-exfiltration.pdf
http://www.biostathandbook.com/twosamplettest.html
https://github.com/Azure/SimuLand
https://github.com/mitmproxy/mitmproxy
https://www.rapid7.com/blog/post/2011/06/29/meterpreter-httphttps-communication/
https://www.rapid7.com/blog/post/2011/06/29/meterpreter-httphttps-communication/
https://netmarketshare.com/operating-system-market-share.aspx
https://suricata.io/
https://rules.emergingthreats.net/
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://securelist.com/analysis/publications/36830/red-october-detailed-malware-description-1-first-stage-of-attack/
https://securelist.com/analysis/publications/36830/red-october-detailed-malware-description-1-first-stage-of-attack/
https://github.com/SigmaHQ/sigma
https://github.com/fkie-cad/socbed
https://github.com/fkie-cad/socbed
https://www.microsoft.com/security/blog/2021/04/01/automating-threat-actor-tracking-understanding-attacker-behavior-for-intelligence-and-contextual-alerting/
https://www.microsoft.com/security/blog/2021/04/01/automating-threat-actor-tracking-understanding-attacker-behavior-for-intelligence-and-contextual-alerting/
https://www.microsoft.com/security/blog/2021/04/01/automating-threat-actor-tracking-understanding-attacker-behavior-for-intelligence-and-contextual-alerting/

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Rafael Uetz, Christian Hemminghaus, Louis Hackländer, Philipp Schlipper, and Martin Henze

[60] Robin Sommer and Vern Paxson. 2010. Outside the closed world: On using
machine learning for network intrusion detection. In 2010 IEEE Symposium on
Security and Privacy. IEEE, 305–316.

[61] Symantec. 2015. Internet Security Threat Report 2015. Retrieved July 30, 2019
from https://www.symantec.com/content/en/us/enterprise/other_resources/
21347933_GA_RPT-internet-security-threat-report-volume-20-2015.pdf

[62] Anna Szczepanek. 2020. t-test Calculator. Retrieved June 28, 2021 from https:
//www.omnicalculator.com/statistics/t-test

[63] The MITRE Corporation. 2020. MITRE ATT&CK Evaluations. Retrieved June
28, 2021 from https://attackevals.mitre-engenuity.org/

[64] The MITRE Corporation. 2021. Technique Matrix - Enterprise ATT&CK™. Re-
trieved June 7, 2021 from https://attack.mitre.org/matrices/enterprise/

[65] Melissa JM Turcotte, Alexander D Kent, and Curtis Hash. 2019. Unified host and
network data set. In Data Science for Cyber-Security. World Scientific, 1–22.

[66] Rafael Uetz, Louis Hackländer, and Philipp Schlipper. 2021. SOCBED evaluation
code and dataset as presented at ACSAC 2021. Retrieved September 9, 2021
from https://github.com/fkie-cad/socbed-eval-acsac-2021

[67] Patrick Vandewalle, Jelena Kovacevic, and Martin Vetterli. 2009. Reproducible
research in signal processing. IEEE Signal Processing Magazine 26, 3 (2009), 37–47.
https://doi.org/10.1109/MSP.2009.932122

[68] Kalyan Veeramachaneni, Ignacio Arnaldo, Vamsi Korrapati, Constantinos Bassias,
and Ke Li. 2016. AIˆ2: Training a Big Data Machine to Defend. In 2016 IEEE
2nd International Conference on Big Data Security on Cloud (BigDataSecurity),
IEEE International Conference on High Performance and Smart Computing (HPSC),
and IEEE International Conference on Intelligent Data and Security (IDS). 49–54.
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.79

[69] Verizon. 2011. 2011 Data Breach Investigations Report. Retrieved June 28, 2021
from https://www.wired.com/images_blogs/threatlevel/2011/04/Verizon-2011-
DBIR_04-13-11.pdf

[70] Verizon. 2020. 2020 Data Breach Investigations Report. Retrieved June 28,
2021 from https://enterprise.verizon.com/resources/reports/2020-data-breach-
investigations-report.pdf

[71] Verizon. 2021. 2021 Data Breach Investigations Report. Retrieved June 28,
2021 from https://enterprise.verizon.com/resources/reports/2021-data-breach-
investigations-report.pdf

[72] Charles V Wright, Christopher Connelly, Timothy Braje, Jesse C Rabek, Lee M
Rossey, and Robert K Cunningham. 2010. Generating client workloads and
high-fidelity network traffic for controllable, repeatable experiments in computer
security. In International Workshop on Recent Advances in Intrusion Detection.
Springer, 218–237.

[73] Ting-Fang Yen, Victor Heorhiadi, Alina Oprea, Michael K Reiter, and Ari Juels.
2014. An epidemiological study of malware encounters in a large enterprise. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1117–1130.

[74] Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd Leetham, William Robertson,
Ari Juels, and Engin Kirda. 2013. Beehive: Large-scale log analysis for detecting
suspicious activity in enterprise networks. In Proceedings of the 29th Annual
Computer Security Applications Conference. ACM, 199–208.

A SOCBED SYSTEMS AND SERVICES
Table 3 shows the operating systems, services, and applications
running on the SOCBED base virtual machines. Default services
such as DHCP are omitted for brevity. Most of the services and ap-
plications are required for the implemented attack steps. Additional
services can easily be added and configured using Ansible scripts.

B SOCBED ATTACK STEP DETAILS
Table 4 shows the attack steps currently implemented in SOCBED.
There are three types of attack steps. Steps starting with “infect”
create initial access to the company network by exploiting the
targeted client and then running a payload. This payload establishes
a command and control (C2) channel to the Attacker VM using
Metasploit’s Meterpreter reverse HTTP module [40]. Steps starting
with “c2” use this channel to execute further actions via Meterpreter.
They can only execute successfully when an “infect” attack step
has been executed before on the same client and the payload is
still active, i.e., the client is not rebooted and the process is not
killed. Steps starting with “misc” are self-contained and can be
executed independently. They canmimic, e.g., an internal adversary,

Table 6: Top 20 (by occurrence) Windows event types as
shown in Figure 5 with their mean number of occurrences
over 20 iterations using the default logging configuration.

Provider name ID x̄

1 Microsoft-Windows-Security-Auditing 5379 4928.7
2 Microsoft-Windows-Security-Auditing 5061 1499.8
3 Microsoft-Windows-WindowsUpdateClient 44 1231.0
4 Microsoft-Windows-Kernel-General 16 537.0
5 PowerShell 600 504.6
6 Microsoft-Windows-Security-Auditing 4624 466.5
7 Microsoft-Windows-Security-Auditing 4672 407.7
8 Microsoft-Windows-DistributedCOM 10010 257.1
9 Microsoft-Windows-Security-Auditing 4799 255.2
10 Microsoft-Windows-WindowsUpdateClient 19 206.6
11 Microsoft-Windows-Security-Auditing 4688 202.2
12 Microsoft-Windows-WindowsUpdateClient 43 185.1
13 Microsoft-Windows-FilterManager 6 173.2
14 Windows Error Reporting 1001 137.2
15 ESENT 642 128.8
16 Microsoft-Windows-Security-Auditing 4798 120.3
17 Microsoft-Windows-Security-Auditing 5058 119.3
18 Microsoft-Windows-Security-Auditing 4648 108.7
19 Microsoft-Windows-Security-SPP 1003 101.1
20 Microsoft-Windows-Security-SPP 16394 71.0

an employee falling victim to a social engineering attack, or an
attack step triggered by an already active malware.

Some of the implemented attack steps are commonly performed
by external attackers (infect_email_*, c2_*), while others resemble
internal attackers (misc_exfiltration, infect_flashdrive_exe) or both
alike (remaining misc_* attacks).

C DETAILED EVALUATION RESULTS
Table 5 shows all Sigma and Suricata alerts that occurred during
our evaluation. For Sigma, we used all Windows Event Log-specific
rules as of February 4, 20212. For Suricata, we used Emerging Threat
rules as of May 4, 2021. The latter are contained in the SOCBED
repository because stale rule sets are generally not provided for
download on the official website3, yet a fixed version of the rules is
important for the reproducibility of Suricata alerts across different
SOCBED instances.

Table 6 shows the top 20 (by occurrence) Windows event types
as depicted in Figure 5. All of these types commonly appear on
Windows systems and are not specific to the executed attacks.
For example, the most frequent event Microsoft-Windows-Security-
Auditing ID 5379 informs that “Credential Manager credentials were
read”, i.e., a user performs a read on stored credentials, e.g., during
the logon process4.

2https://github.com/SigmaHQ/sigma/tree/12054544bbac415438b2207c08bd92633a51b
3https://rules.emergingthreats.net/OPEN_download_instructions.html
4https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?
eventid=5379

https://www.symantec.com/content/en/us/enterprise/other_resources/21347933_GA_RPT-internet-security-threat-report-volume-20-2015.pdf
https://www.symantec.com/content/en/us/enterprise/other_resources/21347933_GA_RPT-internet-security-threat-report-volume-20-2015.pdf
https://www.omnicalculator.com/statistics/t-test
https://www.omnicalculator.com/statistics/t-test
https://attackevals.mitre-engenuity.org/
https://attack.mitre.org/matrices/enterprise/
https://github.com/fkie-cad/socbed-eval-acsac-2021
https://doi.org/10.1109/MSP.2009.932122
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.79
https://www.wired.com/images_blogs/threatlevel/2011/04/Verizon-2011-DBIR_04-13-11.pdf
https://www.wired.com/images_blogs/threatlevel/2011/04/Verizon-2011-DBIR_04-13-11.pdf
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2021-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2021-data-breach-investigations-report.pdf
https://github.com/SigmaHQ/sigma/tree/12054544bbac415438b2207c08bd92633a51b
https://rules.emergingthreats.net/OPEN_download_instructions.html
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=5379
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventid=5379

Reproducible and Adaptable Log Data Generation for Sound Cybersecurity Experiments ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Table 3: Each SOCBED VM runs services/applications required for emulating users, adversaries, or basic network functionality.

Virtual Machine Operating system Service/Application Purpose

Attacker Kali Apache HTTP Server serves malicious website
Email handler responds to emails
Metasploit console launches cyberattacks
Meterpreter HTTP listener accepts connections

Client Windows Firefox retrieves web pages
User Emulation generates user activity, opens email attachments and links

Company Router IPFire NTP server synchronizes time
Squid provides HTTP proxy

DMZ Server Ubuntu Damn Vulnerable Web App gets exploited
Postfix & Dovecot transfers and delivers emails

Internal Server Ubuntu Samba acts as Windows Domain Controller
Internet Router IPFire NTP server synchronizes time

Squid provides HTTP proxy
Log Server Ubuntu Elasticsearch stores log data

Logstash collects log data
Kibana searches and visualizes log data

Table 4: The attack steps currently implemented in SOCBED cover all ATT&CK tactics (filled circles indicate coverage).

Attack name Description R
ec
on

na
is
sa
nc

e
R
es
ou

rc
e
D
ev

el
op

m
en

t

In
it
ia
lA

cc
es
s

Ex
ec
ut
io
n

Pe
rs
is
te
nc

e
Pr

iv
il
eg

e
Es

ca
la
ti
on

D
ef
en

se
Ev

as
io
n

C
re
de

nt
ia
lA

cc
es
s

D
is
co

ve
ry

La
te
ra
lM

ov
em

en
t

C
ol
le
ct
io
n

C
om

m
an

d
an

d
C
on

tr
ol

Ex
fi
lt
ra
ti
on

Im
pa

ct
infect_email_exe Sends an email containing an infected executable file
infect_flashdrive_exe Mounts a drive and runs an infected exe file
c2_change_wallpaper Changes the wallpaper on the target host
c2_download_malware Downloads malware through Meterpreter
c2_exfiltration Finds and sends documents over the C&C channel
c2_mimikatz Obtains cached credentials using mimikatz
c2_take_screenshot Takes a screenshot and downloads it
misc_download_malware Downloads malware from a web server
misc_execute_malware Executes a malicious binary
misc_exfiltration Copies files to a removable drive
misc_set_autostart Sets an autostart in the Windows registry
misc_sqlmap Performs an SQL injection attack to steal credentials

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Rafael Uetz, Christian Hemminghaus, Louis Hackländer, Philipp Schlipper, and Martin Henze

Table 5: Alerts per rule for our exemplary scenarios (𝑑efault and 𝑏est-practice logging configuration). The two lines per rule
show the results (sample mean and SD, 𝑛 = 10) for the two hosts on which the experiment was performed, respectively (second
host with gray background, differences in boldface).

Rule name Number of alerts
𝑥𝑑 𝑠𝑑 𝑥𝑏 𝑠𝑏

Si
gm

a

Autorun Keys Modification 0 0 1 0
0 0 1 0

Direct Autorun Keys Modification 0 0 1 0
0 0 1 0

Meterpreter or Cobalt Strike Getsystem Service Start 0 0 1 0
0 0 1 0

Non Interactive PowerShell 0 0 1 0
0 0 1 0

Windows PowerShell Web Request 0 0 3 0
0 0 3 0

Su
ri
ca
ta

ET INFO EXE IsDebuggerPresent (Used in Malware Anti-Debugging) 1 0 1 0
1 0 1 0

ET INFO Executable Download from dotted-quad Host 1 0 1 0
1 0 1 0

ET INFO Executable Retrieved With Minimal HTTP Headers - Potential Second Stage Download 1 0 1 0
1 0 1 0

ET INFO SUSPICIOUS Dotted Quad Host MZ Response 2 0 2 0
2 0 2 0

ET INFO SUSPICIOUS SMTP EXE - EXE SMTP Attachment 2 0 2 0
2 0 2 0

ET POLICY PE EXE or DLL Windows file download HTTP 2 0 2 0
2 0 2 0

ET SCAN Sqlmap SQL Injection Scan 2 0 2 0
2 0 2 0

ET TROJAN Possible Metasploit Payload Common Construct Bind_API (from server) 1.7 0.483 1.7 0.483
1.9 0.316 1.9 0.316

ET WEB_SERVER ATTACKER SQLi - SELECT and Schema Columns 6.4 0.699 6.1 1.595
6.6 0.699 6.4 0.516

ET WEB_SERVER Attempt To Access MSSQL xp_cmdshell Stored Procedure Via URI 1 0 1 0
1 0 1 0

ET WEB_SERVER MYSQL Benchmark Command in URI to Consume Server Resources 2 0 2 0
2 0 2 0

ET WEB_SERVER MYSQL SELECT CONCAT SQL Injection Attempt 22 0 22 0
22 0 22 0

ET WEB_SERVER Possible attempt to enumerate MS SQL Server version 2 0 2 0
2 0 2 0

ET WEB_SERVER Possible Attempt to Get SQL Server Version in URI using SELECT VERSION 6 0 6 0
6 0 6 0

ET WEB_SERVER Possible MySQL SQLi Attempt Information Schema Access 4 0 4 0
4 0 4 0

ET WEB_SERVER Possible SQL Injection Attempt SELECT FROM 16 0 16 0
16 0 16 0

ET WEB_SERVER Possible SQL Injection Attempt UNION SELECT 19 0 19 0
19 0 19 0

ET WEB_SERVER Script tag in URI Possible Cross Site Scripting Attempt 1 0 1 0
1 0 1 0

ET WEB_SERVER SQL Errors in HTTP 200 Response (error in your SQL syntax) 36 0 36 0
36 0 36 0

ET WEB_SERVER SQL Injection Select Sleep Time Delay 7 0 7 0
7 0 7 0

	Abstract
	1 Introduction
	2 Log Data in Cybersecurity Research
	2.1 Challenges of Acquiring Log Data
	2.2 Missing Reproducibility and Adaptability
	2.3 The Case for Adaptable Log Datasets

	3 Design Goals for Sound Cybersecurity Experiments
	3.1 Properties of Sound Experiments
	3.2 Research Artifacts for Sound Experiments
	3.3 Testbeds for Artifact Generation

	4 Analysis of Related Work
	5 SOCBED: Reproducible and Adaptable Log Data Generation
	5.1 Systems and Network Topology
	5.2 Testbed Infrastructure
	5.3 Log Data Generation
	5.4 Reproducibility and Adaptability

	6 Evaluation
	6.1 Methodology
	6.2 Exemplary Multi-Step Cyberattack
	6.3 Testbed Setup and Log Analysis
	6.4 Results of the Exemplary Experiment
	6.5 Soundness of the Experiment
	6.6 Deep Dive: Variations in Log Data

	7 Discussion and Limitations
	8 Conclusion
	Acknowledgments
	References
	A SOCBED Systems and Services
	B SOCBED Attack Step Details
	C Detailed Evaluation Results

