
CIRED 2021 Conference 20– 23 September 2021 

Paper 0916

An Approach of Replicating Multi-Staged Cyber-Attacks
and Countermeasures in a Smart Grid Co-Simulation

Environment
Ömer Sen1* , Dennis van der Velde1, Sebastian N. Peters2, Martin Henze3

1Digital Energy, Fraunhofer FIT, Aachen, Germany
2IAEW, RWTH Aachen University, Aachen, Germany

3Cyber Analysis & Defense, Fraunhofer FKIE, Wachtberg, Germany
* oemer.sen@fit.fraunhofer.de

Keywords: CYBER SECURITY, CYBER ATTACKS, INTRUSION DETECTION SYSTEMS,
CO-SIMULATION, CYBER-PHYSICAL SYSTEM

Abstract

While the digitization of power distribution grids brings many benefits, it also introduces new vulnerabilities for cyber-attacks.
To maintain secure operations in the emerging threat landscape, detecting and implementing countermeasures against cyber-
attacks are paramount. However, due to the lack of publicly available attack data against Smart Grids (SGs) for countermeasure
development, simulation-based data generation approaches offer the potential to provide the needed data foundation. Therefore,
our proposed approach provides flexible and scalable replication of multi-staged cyber-attacks in an SG Co-Simulation Environ-
ment (COSE). The COSE consists of an energy grid simulator, simulators for Operation Technology (OT) devices, and a network
emulator for realistic IT process networks. Focusing on defensive and offensive use cases in COSE, our simulated attacker can
perform network scans, find vulnerabilities, exploit them, gain administrative privileges, and execute malicious commands on
OT devices. As an exemplary countermeasure, we present a built-in Intrusion Detection System (IDS) that analyzes generated
network traffic using anomaly detection with Machine Learning (ML) approaches. In this work, we provide an overview of the
SG COSE, present a multi-stage attack model with the potential to disrupt grid operations, and show exemplary performance
evaluations of the IDS in specific scenarios.

1 Introduction

In view of the ongoing digital transformation of electric power
systems to SGs, where complexity and dependence on Infor-
mation and Communication Technology (ICT) have already
increased significantly, new challenges for secure and stable
grid operation arise [1, 2]. As a result, more operational pro-
cesses of power grids are controlled by computers with sensors,
monitoring, management services, and high-level automation,
i.e., OT, leading to the emergence of (partially) remotely
controllable systems with full operational capability without
human intervention. Disruptions or large-scale power outages
not only cause public chaos, dislocation, and lost production,
but can also endanger human lives, as in Venezuela in 2020 [3],
and must be protected both physically and digitally [4]. It is
known from ICT systems in other domains, that more com-
plexity, more users, and more communication interfaces lead
to a larger attack surface for cyber-attacks [5]. Cyber-attacks
on critical infrastructure from recent years show the risks for
industrial control systems such as Supervisory Control and
Data Acquisition (SCADA) systems [4]. The development, val-
idation, and testing of data-driven countermeasures such as
ML-based detection methods for sophisticated cyber-attacks
depend on the availability and quality of attack data under
realistic conditions, generated either synthetically or under

representative laboratory conditions, as they are not publicly
available [6]. Bridging this gap requires replicating attack sce-
narios in an isolated, secure, and controllable environment that
provides not only valid properties within the energy domain,
but also ICT. Thus, to rationally and comprehensibly repre-
sent the behavior of a multi-stage attack, the generation of valid
attack data based on a structured and plausible approach within
a scalable and flexible environment that realistically replicates
all necessary layers of an SG application is required [6]. Our
aim in this work is to provide an approach to replicate such
scenarios to generate the data that can be used to develop, val-
idate, and test domain-specific countermeasures against cyber-
attacks. To this end, this paper presents a simulation-driven SG
testing environment that aids in the investigation of coordinated
cyber-attacks and the development of appropriate remediation
and countermeasures. Our contributions are:

(1)We propose our approach to replicate cyber vulnerabilities
of OT components and multi-stage cyber-attacks in a COSE.

(2)We show and describe a structured and comprehensive setup
for generating cross-domain attack traces.

(3)We present and discuss the demonstrated use case of exem-
plary deployment and evaluation of countermeasures such
as (semi-)supervised ML-based IDS within the SG domain.
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2 Components & Security in Smart Grids

As a basis for our work, we provide a brief overview of SG core
components, their security issues in SG utilities, and highlight
possible remediation approaches.

2.1 ICT in Power Grids

ICT in power grids enables dynamic control of power gen-
eration, consumption, and storage by using advanced control
systems to monitor, protect and automatically optimize grid
operation [7]. As power fluctuations generally increase due to
volatile Distributed Energy Resources (DERs), networking via
ICT is becoming an integral part of SGs [8]. The increased use
of ICT is causing a paradigm shift in distribution grids, where
in the past distribution grid operators had hardly any control
and knowledge about distributed power injection into their
grid [7]. The conventional control structure between higher-
level control units and field- or station-level devices is based
on the SCADA, which describes the organization of large spa-
tially distributed ICT systems [9]. Its composition in the energy
domain usually consists of a Master Terminal Unit (MTU)
with connected Human Machine Interface (HMI) and several
Remote Terminal Units (RTUs). The systems are connected via
a communication network with routers and switches and sep-
arated from the engineering workstations, the company offices
and the Internet by a firewall (or even air-gap).

2.2 Cyber-Security in Smart Grids

With the growing amount of ICT components in power grids,
new security concerns arise due to the relatively long life cycle
of IT components in power grids, the homogeneous environ-
ment of commercial IT products and systems, the provision of
open interfaces, and the increasing interconnection of differ-
ent actors [10]. This increased interconnectedness can create
vulnerabilities, described as flaws or weaknesses in the design,
implementation, or operation and management of a system,
component, or protocol that can be exploited to violate security
policies [11]. In terms of attack propagation, i.e., lateral move-
ment, vulnerabilities can be exploited to control remote sys-
tems and networks such as Remote Code Execution (RCE) and
Privilege Escalation (PE) [12]. An RCE vulnerability allows
user-supplied input to software to be executed on the system
by a programming language parser [13]. PE occurs when a
user is given more access to resources or functions on a system
than they are allowed [13]. Despite a variety of preventive mea-
sures such as strict user management, password policies, access
control, and network segmentation, intrusion detection capabil-
ities are still needed to meet the high-security requirements in
SG. A promising approach to detect such invasive attack prop-
agations is an IDS, which describes a technique for detecting
unauthorized access, such as intrusion attempts, to a computer
system or network by using either anomaly-based or signature-
based approaches, or a mixture of both [14]. In particular, the
anomaly-based detection method is based on an approach that
classifies observed events within the system being monitored

according to the specified or learned system behavior char-
acterization under normal operating conditions. Any deviation
from the normal system behavior characterization is classified
as an anomaly. For the characterization of normal system oper-
ating behavior, an ML algorithm can be used that learns from
a dataset of examples and can generalize patterns that exist
within the dataset after the learning phase is complete [15]. The
following ML approaches are considered in this work for sepa-
rating, clustering, and deciding network traffic into normal and
abnormal traffic [16]:

(1)Random Forest (RF) is a supervised classification method
that consists of multiple decision trees to classify data.

(2)K-Nearest-Neighbor (KNN) is a supervised ML algorithm
used for classification and regression.

(3)The Local-Outlier-Factor (LOF) algorithm is a neighbor-
hood algorithm that calculates a degree of abnormality or
"outlierness" for each point in the data set.

(4)The Isolation Forest (IF) algorithm is used to uncover data
points that can be partitioned more quickly than others.

A prominent use case of our approach is the provision of an
adequate test environment to replicate multi-stage attack sce-
narios and provide a foundation to investigate countermeasures
such as IDS for their suitability to domain-specific deployment
scenarios, which are further described in this paper.

2.3 Related Work

Various approaches consider the analysis of coordinated
attack scenarios using mathematical modeling or cyber-attack
trees [17, 18]. Furthermore, various approaches in COSE
are being explored that consider hardware-in-the-loop co-
simulation or a synthetic framework capable of simulating
attack scenarios in SG applications to generate normal and
attack data [19, 20]. In exploring countermeasures, other
approaches introduce ML-based IDS solutions based on a
random forest algorithm to classify communications data
in advanced metering infrastructures based on selected fea-
tures [21]. In this work, we present an SG test simulation envi-
ronment for modeling a dynamic, multi-stage attacker based on
a tree-like decision logic for determining its attack sequences.
Furthermore, by deploying isolated processes in Docker con-
tainers in our test environment, we can run a variety of services
and vulnerabilities, allowing the modeled attacker to dynami-
cally explore the network to exploit found vulnerabilities. With
our focus on network traffic in SG, we can evaluate the suitabil-
ity of semi-supervised approaches within the domain-specific
application and also validate the applicability of the generated
data from our test environment.

3 Methodology

To support ICT security research in SGs, we propose an
approach to simulate coordinated cyber-attacks, defensive
countermeasures, and realistic network structures and traffic.
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Fig. 1 Overview of the COSE structure, consisting of
MOSAIK, Containernet, Pandapower, RTUs, MTU, Attacker,
and IDS with their data flow.

3.1 Co-Simulation Testbed Setup

Our proposed approach is based on a COSE capable of sim-
ulating a Pandapower-based [22] power grid coupled with an
IT network that emulates IT and OT devices in a stateful
manner managed by a centralized scheduler, i.e., MOSAIK
framework [23] (cf. Figure 1). Emulation of IT networks
over Containernet [24] enables network transport function-
alities between OT devices (e.g., RTU, MTU) via IT (e.g.,
switches, routers), such as dynamic network structures includ-
ing protocol conformance, configurable delay, packet loss and
bandwidth, and link disconnects. The specification of the sim-
ulated infrastructure configuration is based on [2] and all
simulators such as OT devices, attackers, and IDSs are based
on Docker containers. The focus of this work is on simulat-
ing multi-stage cyber-attacks and countermeasures such as IDS
in SG. To simulate different attack vectors, we then integrate
multiple vulnerabilities into the simulated RTUs with mini-
mal configuration effort, providing exploitation opportunities
for multiple stages of an attack (cf. Section 3.2). For conduct-
ing observable, multi-stage attacks, we also simulate a decision
logic-based Attacker Model (AM) equipped with an arsenal of
cyber exploits that provide useful attack data (cf. Section 3.3).
The IDS can be instantiated on a device within the IT network
emulation environment, capable of analyzing network traffic
captured by mirrored SPAN ports (cf. Section 3.4).

3.2 Vulnerability Integration

In the context of this work, we address vulnerabilities that
allow lateral movement via remote exploitation, such as RCE
and PE. The replication of RCE attacks is realized by integrat-
ing different types of vulnerabilities covering different proto-
cols such as HTTP/S, Secure Shell (SSH), and Telnet. Many
RTUs and industrial computers provide remote access service
and setup interface for remote management on certain TCP
ports. The concept of these vulnerabilities relies on providing
a simple, running service (web interface, SSH server, telnet
service) on specific ports (e.g., 80, 22, 23) that are reduced

to the ability to execute commands on the computer system
(e.g., using known credentials to execute arbitrary commands
after logging in). In combination with PE, attack scenarios can
be induced during COSE runtime, such as a Denial of Service
(DoS) state where simulator traffic is disabled or a compro-
mised simulated device sends spoofed values. After gaining
remote access via RCE vulnerabilities, the AM then attempts
to escalate privileges on the intruded host (e.g., Linux-based
host systems) by exploiting PE vulnerabilities such as set-user-
ID (SUID) or sudoers enabled script. Both exemplary privi-
lege escalation vulnerabilities behave similarly to the ’sudo’
command on a Linux command line but allow administrative
command execution without a password.

3.3 Attacker Model (AM) Procedure

Using these vulnerabilities, our AM implements multi-stage
attack logic, exploits, and additional software tools whose
attack actions and traffic-traces are logged for the purpose of
identifying and marking attack data. The attack process itself
follows a tree-like structure, starting with a predefined attack
goal and ending with the execution of actions to achieve that
goal. Thus, the attack setup built for the testbed consists of four
stages and focuses on targeting RTU devices:

(1)Find connected systems: Using a network scanner tool, this
stage enumerates all reachable systems and their open ports,
i.e., all stations (RTUs) found by scanning.

(2)Vulnerability check: Exploit scripts are run for all reachable
systems with matching open ports to check if RCE vul-
nerabilities are accessible behind the ports as described in
Section 3.2.

(3)Check privileges and exploit: For all systems compromised
in stage 2, user privileges are checked and attempts are made
to elevate privileges to become the root user by exploiting
PE vulnerabilities as described in Section 3.2.

(4)Affect the target: After gaining the required privileges,
actions are chosen to achieve the predefined attack goal
(e.g., DoS or data manipulation, e.g., of measurements, to
disrupt grid operation).

3.4 Intrusion Detection Approach

Within our work, we have chosen the approach of an IDS
as a countermeasure to show the capabilities of the COSE in
terms of a test environment for the development and testing
of detection methods, as well as to demonstrate the usabil-
ity of the generated data. Various IDS approaches are utilized
(cf. Section 2.2) that receive network traffic from a particu-
lar RTU switch port through a mirrored port on the central
SCADA switch, through which all SCADA traffic in that COSE
is routed. Thus, the received traffic sample contains all intended
traffic between an MTU and an RTU, as well as potential
attack traffic caused by other than intended communications
on the network. Captured traffic from the interfaces is col-
lected, decoded, and exported to be analyzed by the selected
ML algorithms for anomaly detection (cf. Section 2.2). The
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utilized high-level data fields are Source, Destination, Proto-
col, and Length (in bytes). Our generated datasets (scenarios
1-6) contain network traffic under normal and attack conditions
with different types of shares (cf. Table 1). The relatively high
percentage of attack traffic is due to the generation of large
amounts of scan traffic in attack stage 2. Also, scenarios 1-
3 are containing a DoS attack, i.e., the RTU stops its service
after a successful attack and therefore produces less traffic. Sce-
narios 4-6 contain a manipulation attack, i.e., the RTU sends
manipulated measurement values to the MTU. The data sam-
ples are separated into test and training sets and their respective
classifications (attack or normal), which are done manually. A
data sample can contain both, attack and normal data. E.g.,
if an attack starts and stops at a certain time of simulation,
then the traffic before and after the attack is normal within
the same data sample. For supervised ML algorithms, train-
ing on classified data is required. The training is performed
on a sample containing an attack, while testing is performed
with samples containing other attacks. For semi-supervised ML
algorithms, unclassified data is sufficient for training, but it
must not contain attack traffic to learn normal system behavior.

Table 1 Shares of normal and attack traffic (balance).
Scenario 1 2 3 4 5 6

Attack [%] 98.05 97.75 98.01 72.80 71.86 71.02
Normal [%] 1.95 2.25 1.99 27.21 28.14 27.98

4 Results

In this section, we demonstrate that the COSE is able to repli-
cate different attacks and can be used, for example, to compare
different IDS approaches.

4.1 Attack Replication

An exemplary multi-stage attack scenario is demonstrated
using a simulated medium/low voltage distribution grid
equipped with networked assets such as ICT switch, MTU,
RTU, DER, etc., (cf. Figure 2). The RTU components are
equipped with the vulnerabilities described in Section 3.2. To
illustrate further, we also present the automatically executed
stages of the attack process within the COSE using terminal
executions and a measurement plot of RTU 1 over the simu-
lation steps. In the first stage of the sequence, the AM scans
the SCADA network and identifies the connected device, e.g.,
RTU 1 with its open TCP ports (22, 23, and 80) and con-
figured services (SSH, Telnet, and Nginx webserver). Based
on the gathered information, in stage 2 the AM performs
RCE via the identified vulnerable web interface on port 80
equipped with a command execution script by specifying the
’whoami’ command as a parameter, which issues its execut-
ing user ’www-data’. Since the ’www-data’ user does not
have administrative privileges, the AM extends his privileges
in stage 3 through PE by exploiting a found SUID vulnerabil-
ity. In the final stage, the AM manipulates the measured data
about the loading, active and reactive power of the secondary
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Fig. 2 Illustration of the simulated SG scenario representing
a medium/low voltage distribution grid consisting of multiple
DERs, resistive/inductive loads, and controlling field devices
within a SCADA network. Furthermore, individual attack
stages of an exemplary multi-stage attack scenario are visual-
ized, consisting of network scan (S1), RCE (S2), PE (S3), and
data manipulation (S4).

substation transformer and transmits it to the MTU. Thus, it can
be suggested that our AM is capable of disrupting grid opera-
tions and maintaining this for extended periods of time with
sophisticated False Data Injection (FDI) techniques [16].

4.2 Countermeasure Evaluation

Using the deployment and training method of selected ML-
based IDS approaches described in Section 3.4, an exemplary
evaluation demonstrates the ability of COSE to investigate and
compare countermeasures (cf. Figure 3). We evaluate the dif-
ferent ML approaches over the different attack scenarios (cf.
Table 1) using the F1 score (harmonic mean of Precision and
Recall). For the supervised algorithms, it is observed that KNN
and RF achieve nearly equal detection rates for more balanced
traffic shares, with RF showing slightly better results within the
specified test environment and using only the specified attack
sequences. The semi-supervised algorithm LOF produces sig-
nificantly better detection rates than IF. It can be seen that
the attack design and traffic shares have a large impact on the
resulting detection quality, with more balanced shares having
a more positive effect. However, the absence of a packet is not
detected as an anomaly because the algorithms are trained on
individual packets and not on packet sequences. To improve
detection rates, larger proportions of normal traffic with more
complex and diverse attack scenarios are required, for which
our COSE provides an advanced foundation to replicate the
dynamic nature of SGs with the different data sources, states,
and operating conditions exemplified in this work.

5 Conclusion

Due to the lack of attack data in critical infrastructure domains,
this paper presents an approach to aid the investigation of
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Fig. 3 F1 performance measurement of the ML-based IDS
algorithm for 6 different scenarios (cf. Table 1).

coordinated cyber-attacks and the development of appropriate
remediation and countermeasures such as IDS using a COSE.
The COSE has been extended by possibilities for the replica-
tion of cyber vulnerabilities and multi-stage cyber-attacks, as
well as mutual reachability of devices on the network. It gener-
ates protocol-compliant network traffic and takes into account
network characteristics such as delays or link disabling. An
AM is simulated that can perform network scans, find vulner-
abilities, exploit them, gain administrative privileges and exe-
cute malicious commands on the OT devices. We demonstrate
an example multi-stage attack sequence that has the potential
to disrupt grid operations by manipulating measured values.
To show the applicability of our approach to improve coun-
termeasure development and validation, we implemented an
example of ML-based IDS. It analyzes the generated network
traffic using two supervised algorithms (KNN, RF) and two
semi-supervised algorithms (LOF and IF). The integrated IDS
provides indications of the quality of the generated network
traffic data and identifies key challenges for further exploration
of this approach. Thus, our COSE-based approach enables the
development and investigation of novel countermeasures such
as new IDS solutions by providing cross-domain attack data in
SG. To provide more diverse and balanced data, future work
will include extending vulnerabilities and exploit techniques to
different simulated devices, more sophisticated data manipula-
tion strategies such as FDI techniques, and realistic operational
logic such as energy management systems.

Acknowledgment: This work has partly been funded by the
German Federal Ministry for Economic Affairs and Energy
(BMWi) under project funding reference 0350028.

[1] van der Velde, D., Henze, M., Kathmann, P. and et al.:
‘Methods for Actors in the Electric Power System to
Prevent, Detect and React to ICT Attacks and Failures’.
IEEE ENERGYCon, 2020.

[2] Klaer, B., Sen, Ö., van der Velde, D. and et al.: ‘Graph-
based Model of Smart Grid Architectures’. SEST, 2020.

[3] Jones, S.: ‘Venezuela blackout: what caused it and what
happens next’. The Guardian, 2019.

[4] Kabalci, E. and Kabalci, Y.: ‘Smart grids and their com-
munication systems’. Springer, 2019.

[5] Bird, J. and Manico, J.: ‘Owasp attack surface analy-
sis cheat sheet’. Open Web Application Security Project,

2015.
[6] Zuech, R., Khoshgoftaar, T.M. and Wald, R.: ‘Intrusion

detection and big heterogeneous data: a survey’. Journal
of Big Data, 2015.

[7] Roy, D.T.: ‘Intelligente energiesysteme der zukunft: Die
entwicklung von smart metering und smart grid im jahre
2025’. Diplomica Verlag, 2015.

[8] Leps, O.: ‘Der aufbau von betriebs-und steuerungsanla-
gen’. Hybride Testumgebungen für Kritische Infrastruk-
turen, 2018.

[9] Radoglou.Grammatikis, P., Sarigiannidis, P., Gian-
noulakis, I. and et al.: ‘Attacking iec-60870-5-104 scada
systems’. IEEE SERVICES, 2019.

[10] Eder.Neuhauser, P., Zseby, T., Fabini, J. and et al.: ‘Cyber
attack models for smart grid environments’. Sustainable
Energy, Grids and Networks, 2017.

[11] Shirey, R.: ‘Internet security glossary’. FYI 36 - RFC
2828, 2000.

[12] Åberg, O. and Sparf, E.: ‘Validating the meta attack
language using mitre att&ck matrix’. MITRE, 2019.

[13] Bach.Nutman, M.: ‘Understanding the top 10 owasp
vulnerabilities’. arXiv preprint arXiv:2012.09960, 2020.

[14] Kizza, J.M., Kizza and Wheeler: ‘Guide to computer
network security’. Springer, 2013.

[15] Bhattacharyya, D.K. and Kalita, J.K.: ‘Network anomaly
detection: A machine learning perspective’. Crc Press,
2013.

[16] Sayghe, A., Hu, Y., Zografopoulos, I. and et al.: ‘Sur-
vey of machine learning methods for detecting false data
injection attacks in power systems’. IET Smart Grid,
2020.

[17] Xiang, Y., Wang, L. and Liu, N.: ‘Coordinated attacks on
electric power systems in a cyber-physical environment’.
Electric Power Systems Research, 2017.

[18] Falco, G., Viswanathan, A., Caldera, C. and et al.: ‘A
master attack methodology for an ai-based automated
attack planner for smart cities’. IEEE Access, 2018.

[19] Albarakati, A., Moussa, B., Debbabi, M. and et al.:
‘Openstack-based evaluation framework for smart grid
cyber security’. IEEE SmartGridComm, 2018.

[20] Babu, V., Kumar, R., Nguyen, H.H. and et al.: ‘Melody:
synthesized datasets for evaluating intrusion detection
systems for the smart grid’. WSC, 2017.

[21] Meidan, Y., Bohadana, M., Shabtai, A. and et al.: ‘Detec-
tion of unauthorized iot devices using machine learning
techniques’. arXiv preprint arXiv:1709.04647, 2017.

[22] Thurner, L., Scheidler, A., Schäfer, F. and et al.: ‘pan-
dapower—an open-source python tool for convenient
modeling, analysis, and optimization of electric power
systems’. IEEE Transactions on Power Systems, 2018.

[23] Schütte, S., Scherfke, S. and Tröschel, M.: ‘Mosaik: A
framework for modular simulation of active components
in smart grids’. IEEE SGMS, 2011.

[24] Peuster, M., Karl, H. and Van.Rossem, S.: ‘Medicine:
Rapid prototyping of production-ready network services
in multi-pop environments’. IEEE NFV-SDN, 2016.

5


