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Abstract—New levels of cross-domain collaboration between
manufacturing companies throughout the supply chain are antic-
ipated to bring benefits to both suppliers and consumers of prod-
ucts. Enabling a fine-grained sharing and analysis of data among
different stakeholders in an automated manner, such a vision of
an Internet of Production (IoP) introduces demanding challenges
to the communication, storage, and computation infrastructure in
production environments. In this work, we present three example
cases that would benefit from an IoP (a fine blanking line, a
high pressure die casting process, and a connected job shop) and
derive requirements that cannot be met by today’s infrastructure.
In particular, we identify three orthogonal research objectives:
(i) real-time control of tightly integrated production processes to
offer seamless low-latency analysis and execution, (ii) storing
and processing heterogeneous production data to support scalable
data stream processing and storage, and (iii) secure privacy-
aware collaboration in production to provide a basis for secure
industrial collaboration. Based on a discussion of state-of-the-art
approaches for these three objectives, we create a blueprint for
an infrastructure acting as an enabler for an IoP.

Index Terms—Internet of Production; Cyber-Physical Systems;
Data Processing; Low Latency; Secure Industrial Collaboration

I. INTRODUCTION

Over the last decades, supply chains in manufacturing have
evolved into highly complex and tightly interconnected struc-
tures encompassing several different stakeholders, ranging
from suppliers of raw materials and refining industries to man-
ufacturers of sub components, whole systems and, ultimately,
the consumers. All these entities can contribute to the success
of a product by exchanging knowledge, e.g., when consumers
communicate desired and perceived properties of the product
to the manufacturer or when companies within the supply
chains share characteristics and specifications of their products
among their respective customers and suppliers. The potential
benefits of collaboration throughout the supply chains, with
service providers, and between the different stakeholders are
tremendous; the McKinsey Global Institute, e.g., argues that
by increasing the usage of big data analytics, crowdsourcing,
and advanced product life cycle management, companies could

reduce product development costs and time to market by
between 25% and 50% [1]. Gains in profit margins by 2% to
3% through increased digitization are similarly predicted [1],
as are general improvements in product quality [2].

So far, however, the anticipated potentials have not yet
been unleashed. Manufacturing companies are traditionally
reluctant to share more details on their production processes
than absolutely necessary in fear of accidentally disclosing
trade secrets while getting only meager benefits in return [1].
Additionally, even if a company chose to open up to potential
collaborations, modern production systems already create or-
ders of magnitude more data than they produce goods [3], and
the infrastructure currently present in production environments
has not been designed with a sharing of data or the incorpo-
ration of foreign data into local processes in mind. Incentives
and technical foundations for cross-domain collaborations are
thus missing, and knowledge is predominantly retained locally.

Concepts such as the Industrial Internet of Things (IIoT)
and Industry 4.0 have already targeted the collection and
processing of manufacturing data to automate production
processes as well as the development and deployment of
autonomous control mechanisms to improve system safety
and reliability (see e.g., [4] for an overview of existing
approaches). Yet, the concepts proposed so far mainly aim
at specific locally-constraint advances in single areas, such as
food supply chains, transportation/logistics, or healthcare [5].
In contrast, to enable real cross-domain and inter-company
collaboration, semantically adequate and context-aware data
from production, development and usage need to be made
available to (and potentially reacted to by) interested parties
in real time, at a reasonable level of granularity, and at a
potentially global scale. The isolation of data produced by (and
available to) production machinery on the shop floor needs to
be overcome: Machines and production sites all around the
world should be enabled to exchange information with each
other via a single global infrastructure, essentially creating an
Internet of Production.
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INTERNET OF PRODUCTION (IOP): Based on the envi-
sioned advances, our proposed IoP poses a number of signif-
icant challenges on a potential underlying infrastructure. On
the one hand, the infrastructure needs to support the control
of production processes in real time: Decisions must be made
as quickly as possible to account for the (diverse) individual
process requirements. On the other hand, the infrastructure
needs to be able to deal with vast amounts of heterogeneous
production data, parts of which are processed right away,
while other fractions have to be (permanently) stored for future
analyses. The concept of collaborating companies furthermore
necessitates secure networking and processing paradigms, an
objective which has so far usually been out of scope due to
the focus on locally-constrained scenarios.

The remainder of this paper is organized as follows. In
Section II, we first motivate the vision underlying an IoP
along three real-world use cases: (i) a fine blanking line
producing up to 6.2 Gbit/s worth of measurement data, (ii) a
horizontal cold-chamber high pressure die casting process
with measurement data on different time scales, and (iii) a
connected job shop with significant uncertainties of machining
operations, components, and tools. From these use cases, we
derive challenges and requirements that cannot be met by
today’s communication, storage, and processing infrastructure.
In Section III, we then lay out a blueprint for an infrastructure
that can act as an enabler for an IoP. To this end, we
propose and discuss three orthogonal research objectives that
need to be tackled to realize an IoP-supporting infrastructure.
We conclude our paper and provide an overview of further
research challenges in Section IV.

II. POTENTIALS OF AN INTERNET OF PRODUCTION

To showcase the envisioned significant benefits of an IoP,
but also the resulting key challenges for the infrastructure
which are not sufficiently addressed by the current state of
research, we selected three distinct real-world use cases: a
fine blanking line, a die casting process, and a connected job
shop. In the following, we discuss these use cases in more
detail, identify potential benefits an IoP may bring, and derive
requirements for the underlying infrastructure of an IoP.

A. High-Throughput Data Processing in Fine Blanking

Our first use case, fine blanking, is a precision forming
process in which large numbers of identical work pieces
are cut from a coil of raw material in a press [6]. The
raw materials can vary in thickness (reaching down to less
than 1 mm, with potential fluctuations over the course of
the coil), are influenced by environmental conditions such as
heat, and are subject to physical stress such as uncoiling and
punching within the press. Produced work pieces may hence
vary greatly in the quality of their surfaces and edges and
may even exhibit fine cracks [7], [8], resulting in some of the
produced pieces to be rejected. The blanking punches used
to cut the raw material within the press furthermore are cast
of high-strength materials in complex processes and are thus
very valuable [9]. When subjected to excessive forces (e.g.,

too high punching speeds or punching depths that exceed
the thickness of the raw materials), the punches can easily
wear off, requiring replacements with long down times of the
respective production line.

Tightly integrating the various process parameters, including
properties of the raw material, as well as forces, temperatures,
and vibrations within the press, would thus enable an ad-hoc
adaption of the process, resulting in a reduction of rejected
work pieces through better models for quality prediction [10].
The longevity of the machinery of the line may at the same
time be increased using advanced predictive maintenance
techniques [11]. The sources of the needed parameters are
not restricted to the fine blanking line; the supplier of the
raw material coil, e.g., could make a digitalized production
log available along with the coil, which may include data
that helps configuring the fine blanking line accordingly. In
turn, parameters gathered during the fine blanking process
could also be used in processes further downstream, enabling
a traceability of the goods and their production conditions
throughout the entire supply chain.

The high process speed of fine blanking (up to 140 punches
per minute in our line) and the general complexity of fine
blanking lines (over 100 separately controllable components
in the press alone), however, render a tight integration of
data gathered during the various stages of the supply chain
challenging. In our line, data exchanges occur at frequencies
between 2.5 and 1000 kHz, resulting in up to 6.2 Gbit/s worth
of data that need to be integrated for real-time control deci-
sions [3], as well as potentially stored for downstream use.
Considering the likely scenario of multiple such lines to be
operated at the same site, such numbers will quickly lead
to an overload of the network and processing infrastructure
available in most factory settings, rendering a centralized
processing of the data infeasible. To guarantee the needed
high data exchange frequencies and data rates, finding new
solutions which facilitate a (pre-)processing of data close to
its origin is imperative. Furthermore, exchanging raw data
between different companies can enable the involved orga-
nizations (or, in cases of data leaks, even third parties) to
reverse-engineer process optimizations and, hence, uncover
trade secrets. Mechanisms protecting against the undesired use
of confidential data hence need to be integrated in such a
way that their functionality is provided throughout the entire
infrastructure realizing an IoP.

B. Global-Scale Data Analysis in Die Casting

The horizontal cold-chamber high pressure die casting
(HPDC) process is representative of permanent mold based
near-net-shape production technologies and serves as our sec-
ond use case. The HPDC process is capable of mass producing
high quality, complex geometry castings from non-ferrous
alloys for mechanically demanding applications such as crash
relevant parts for car body components [12]. Variances in
quality and productivity are intrinsic to the process, due to
complex thermal, mechanical, and chemical interdependen-
cies. The highly individual production parts and their corre-
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sponding die designs have significantly differing requirements
for the machine’s optimal operating point. The shot curve,
intensification pressure, spraying process, dosing temperature,
vacuum levels, dwell time in the shot sleeve and in the cavity,
and the overall cycle time all impact the part quality and
productivity. However, their interdependencies have not yet
been fully resolved in a general model since the individuality
of the cavities, machines, process designs, and the production
environments cannot be accounted for. A stable HPDC process
can still cause scrap rates in a range of 5 %–10 %. Common
defects include pre-solidified material from the shot sleeve,
entrained air, flash, and sticking related defects [13].

Real time controlled horizontal cold chamber HPDC ma-
chines generate significant amounts of process data, but even
for the experienced expert, finding the root cause of a defect
retrospectively from the available information can be difficult.
One reason is that the HPDC process generates data on
different time scales. The fast shot and therefore the injection
process, typically lasts anywhere between 20 ms and 200 ms,
the spraying cycle takes around 10 s depending on the spraying
strategy, and the overall cycle time is usually around 60 s.
Identification of an instable sub-process of the overall cycle is
therefore not trivial; especially if an extensive log of previous
production data as a comparison base is missing. Nevertheless,
first investigations using mathematically driven models have
already shown the potential of analyzing data generated within
HPDC production environments [14].

In general, most process-related defects in HPDC are caused
by a complex combination of factors. In real production
environments, eliminating certain process variables to trace
the defect origin is often infeasible. Therefore, extracting all
machine and auxiliary system signals is desirable to make
them accessible for adequate models within an IoP.

For production use, several issues still need to be addressed
regarding the data transfer, storage within an appropriate
infrastructure, and access for external entities while ensuring
stakeholder confidentiality. The process data provided by the
HPDC machine and its auxiliary systems need to be prepared
in a coherent, structured form with appropriate sampling
rates for every sub-system of the HPDC cell. The HPDC
machine, its thermal regulation units, the spraying system
and the dosing furnace should ideally comply with commonly
deployed standards, such as the OPC-UA [15], to enable timely
target actual comparisons, appropriate subsequent data storage,
and analysis by suitable models within an IoP.

C. Real-Time Connected Job Shop

Machining operations are key technologies in most indus-
tries to produce goods for the global market. Due to the high
variety of machine tool designs even very complex workpiece
geometries can be manufactured. With increasing complexity
of the workpiece, choosing the right process parameters for an
optimal, fast, and reliable process becomes more challenging.
Even with ideal parameters, all machining processes are sub-
ject to continuous changes following, e.g., the wear of machine
tool components and tools. Therefore, uncertainties in terms

of process stability and quality occur, resulting in an increased
lead time or even in defect workpieces. In our third use case,
data from the shop floor could help, e.g., to generate real-time
production insights, adjust processes in real-time, optimize
existing processes automatically, and predict failures of the
process or the machines before they occur.

Machine tools provide a constant stream of internal sensor
data and process commands. Recording this information and
combining it with other sources, for example the ERP, MES,
or quality system, enables the creation of a digital snapshot
of the production. By applying model-based analytics, a
digital twin of the workpiece and the machine tool can be
generated. In previous research, a process parallel material
removal application and a machine health monitor have been
created [16]. The material removal application calculates
process force estimations parallel to the process and models
the machine behavior wrt. tool deflection and geometrical axis
errors. From this information, it generates a digital version of
the manufactured workpiece, which is then virtually measured
to assess the quality of the real work piece. The machine
health monitor records the load on different components of
the machine tool and based on this history, it predicts the
remaining life of each of the components.

In the future, all information can be used to monitor,
adjust, and optimize existing machining processes or even
help selecting optimal process parameters for new processes.
Furthermore, the data allows an automatic detection of cutter
wear, as well as to schedule maintenance intervals based
on the predicted remaining life of the machine component.
In a collaborative environment, also external suppliers or
service providers could utilize this information for their own
processes. For example, such a scenario would enable a
machine tool manufacturer to predict, which machine needs
new components and when, by receiving information about
the load on machine tools. Hence, the manufacturer can stock
up these components and ship them to customers just in time.

Overall, machine-process interactions are very complex and
not constant over time. Due to the high uncertainties, a broad
amount of process data from different processes is necessary
to create and validate more advanced models. Depending on
the desired output of the models, different data sources are
required as well. To predict the remaining life of a compo-
nent data from multiple machines with these components are
required to optimize the prediction accuracy. Therefore, key
aspects of an IoP are, who will be the owner of the data, where
the data will be stored, and who has access and the resources
to process it. Furthermore, a concept must be developed on
how to make data accessible (locally, externally, or in the
cloud [17]) and how to stream the data of large machine pools
scalable through the network.

III. AN INFRASTRUCTURE FOR THE IOP

To allow manufacturers to embrace the full potential offered
by an IoP, we require a fundamental shift away from today’s
isolated infrastructure to a fully interconnected production
landscape. Most importantly, as identified in our analysis of
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Fig. 1. The local infrastructure (light gray background) of the Internet of Production incorporates machinery-close sensors to improve today’s manufacturing
processes (as indicated by our three use cases on the left). Our overall design features three key components: (i) in-network processing (INP) and edge
clusters (EC) for seamless low-latency analysis and execution, (ii) data stream processing (DSP) and data lakes (DL) for scalable data processing and storage,
and (iii) and mechanisms for secure industrial collaboration (SIC) with external collaborators (bottom). Additional external processing power and more
sophisticated models in the cloud (dark gray background on the right) complement these local resources.

the three real-world use cases, such an infrastructure needs to
provide solutions for the following three distinct challenges:
(i) real-time control of tightly integrated production processes,
(ii) storing and processing heterogeneous production data,
and (iii) secure privacy-aware collaboration in production. By
tackling these challenges, we pave the way towards realizing
the vision of an IoP and thus allow production systems to
benefit from adequate cross-domain knowledge transfers.

We propose an infrastructure for an IoP and provide a
roadmap to turn this infrastructure into reality. As shown in
Figure 1, our envisioned infrastructure consists of three orthog-
onal approaches (marked in blue) that address the challenges
derived from the use cases: (i) seamless low-latency analysis
and execution to cope with huge bandwidth and real-time
processing demands, (ii) scalable data processing and storage
to allow for flexible data mining and reuse of measured and
pre-processed manufacturing data, and (iii) secure industrial
collaboration to create a global interconnection of production
systems securely processing data of different collaborators.

In this infrastructure, production data flows from the ma-
chinery (represented by our three use cases on the left) through
a local production site network to external resources in the
cloud (right) for offloading data aggregation, complex data ex-
tractions, and compute-intensive machine learning algorithms
as well as other production sites for collaborations (bottom).
We observe that both mechanisms for research objective (i)
(e.g., realized using in-network processing (INP) and edge
computing (EC)) as well as research objective (ii) (e.g.,
achieved using data stream processing (DSP) and data lakes
(DL)) are ideally realized within the local production site
network. In contrast, the mechanisms for research objective
(iii) are enforced at the border of the local production site
network (SIC), i.e., before data is sent to external entities or
other production site networks.

Subsuming our use cases, we identify common characteris-
tics that an infrastructure for an IoP must exhibit to support

the vision of highly-configurable, precise, and interconnected
production sites. In the following, we discuss each of the
three approaches in more detail, briefly refer to related work,
and highlight the remaining challenges and research efforts
required for turning the infrastructure for an IoP into reality.

A. Seamless Low-latency Analysis and Execution

The amount of data that needs to be exchanged not only
between different parts of one production line, but also be-
tween lines and their respective controlling units and further
superordinate systems, is expected to rise steeply in terms
of frequency, numerosity, and size. Traditional factory floor
control and interconnection architectures based on more or less
centralized systems such as (networks of) PLCs are expected
to be too limited in their scalability to keep up with the
growing demands in the mid to long term [3]. New, more
flexible architectures that enable a horizontal scaling and thus
a distribution of the processing load within the network itself
hence have be developed. Moreover, reconfigurations of pro-
duction lines, including the physical movement of sub-systems
(possibly even during active production steps), introduce un-
certainties in the connectivities: A sub-system or controller
may become temporarily unavailable during reconfiguration,
or may move too far away from the process it was controlled
by or used to control, so that continued proper operation
cannot be guaranteed anymore due to losses or latencies.

Different efforts towards enabling inherently more decen-
tralized and low-latency processing schemes have been made,
although not specifically targeting industrial applications. For
one, software-defined networking (SDN), with OpenFlow [18]
and P4 [19] as the most prominent representatives of currently
employed protocols and programming languages, allows push-
ing low-latency processing rules to in-network devices (INDs)
such as routers and switches to facilitate packet filtering or the
enforcement of forwarding policies. Not originally developed
for the execution of intricate algorithms, INDs are however
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limited in their processing power, and the rules that can cur-
rently be executed on them are limited. Yet, first projects that
combine SDN with more expressive languages such as eBPF
have shown that INDs can be used to execute rudimentary
control algorithms [20]. The extent to which INDs may be
used for the execution of control, safety, or further IoP-related
functionality, however, is a research question that needs to be
addressed when developing of an infrastructure for an IoP.
Further, to guarantee seamless operation in reconfiguration
phases, methods for the coordinated distribution and activation
of functionalities among INDs need to be developed.

For cases in which the capabilities of INDs do not suf-
fice, the concept of edge computing (EC), i.e., offloading
functionality to more powerful machines such as PCs or
clusters situated close to the controlled processes, can be
employed [21]. EC devices, while boasting large memory and
powerful computation units, are however often equipped with
general-purpose operating systems, whose complex network
stacks incur delays due to processing overheads. Solutions
aiming at either bypassing the stacks [22] or at partially of-
floading application logic into the operating system kernel [23]
may be employed to lower these delays. Being situated farther
away from the controlled processes than INDs, EC devices
further likely cannot be used for processes such as controlling
machine tools in job shops, which require latencies below
1 ms [24], which are hard to reach when not directly connected
to the process. Thus, how to establish a precise interplay
between higher-level, medium-latency EC devices and more
low-level, low-latency processing on INDs is an open research
question for realizing an infrastructure for an IoP.

At last, even when some IoP infrastructure has eventually
been deployed, the inherently decentralized nature of this in-
frastructure will necessarily incur a re-evaluation of algorithms
that have been used in the more centralized industrial scenarios
of today. For example, whether feasible distributed control
laws exist for all problems remains an open challenge [25].
Hence, when building an infrastructure for an IoP, questions
of algorithmic complexity and tractability, as well as methods
ensuring the co-location or confluence of certain pieces of
information, also need to be considered.

B. Scalable Data Processing and Storage

With the ongoing change to use production data not only
for control and management, new challenges arise for existing
production networks. They are neither designed for transfers of
large amounts of raw data, nor do they offer sufficient speed as
soon as the data transfer takes place outside of the field level.
However, many application scenarios, such as our use cases,
require the results of analyses and decision making processes
to be generated in real time (less than 10 ms), but even
secondary tasks, e.g., data aggregation and compaction, must
often be completed under rigorous time constraints to avoid
overloading networking and storage resources. Lastly, integrat-
ing data from a variety of sources traditionally requires a large
amount of manual effort. Within an IoP, these challenges can

be addressed by employing data lakes in conjunction with data
stream processing and semantic enrichment.

Data stream processing (DSP) provides a promising basis
for the time-sensitive provision of processing results while
distributing computations and reducing the network load. To
prevent the network from being overloaded, algorithms for the
selection, compression, pre-transformation, and aggregation of
data on the edges must be distributed automatically, consider-
ing technical and functional requirements. Further challenges
result from the design as a learning “system of systems”.

Models for prediction or classification, e.g., must first be
trained on a sufficient database. To use the learned models, the
data sources have to be distributed and integrated into the data
processing pipelines. Thereby, requirements for response speed
and availability as well as consistency must be maintained.
Integrated architectures, such as the Lambda architecture [26],
are frequently used in such contexts and combine batch and
stream processing in a parallel fashion, resulting in complex
systems that are difficult to develop and maintain. Research
and development of simplified approaches followed, such as
the Kappa architecture [27]. Modern and advanced approaches,
as implemented by Samza [28], take up these ideas and build
on four main principles [29]: (i) Everything is a stream: Batch
operations become a subset of streaming operations. Hence,
everything can be treated as a stream. (ii) Immutable data
sources: Raw data is persisted and views are derived, but a
state can always be recomputed as the initial record is never
changed. (iii) Single analytics framework: Keep it short and
simple (KISS) principle. A single analytics engine is required.
Code, maintenance, and upgrades are considerably reduced.
(iv) Replay functionality: Computations and results can evolve
by replaying the historical data from a stream.

Data lake (DL) architectures extend the concept of directly
processing information by collecting and provisioning historic
production data, i.e., older process data can be taken into
account to adaptively improve the deployed manufacturing
process. Consequentially, an IoP infrastructure further poses
new challenging requirements on data storage and analytics.
That is, the system should be able to handle the huge amount
of heterogeneous data from different production machines in
a “storage first, query later” manner. The infrastructure may
not be able to process the massive collected real-time data and
extract all the necessary information during data ingestion but
rather at a later phase. Moreover, the specific data items of the
production process and their utility may appear vague in the
design phase, which only unravels after a deeper analysis or
more human expert input. Traditional data warehouses cannot
fulfill these aspects since they require a fixed schema, which
only allows a specific and mostly predefined set of analysis.

For the required data processing needs in an IoP infrastruc-
ture, data lakes offer a big data repository which allows data to
be ingested in their raw format. Thus, in real-time production
environments, expensive overhead of transforming data for
storage can be significantly reduced. Moreover, different from
traditional data warehouses, data lakes support the concept of
“schema-on-read”. Data can be imported and stored in data
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lake first, and users can process the data, and analyze the
complete history of a production process later.

Though there are existing data lake systems [30]–[32],
these are mostly crafted for the specific requirements of
an organization or focus on only certain DL-specific tasks,
e.g., metadata management [33], data quality [34], user data
analytics [35], or data preparation [36]. Additionally, existing
systems are lacking semantic enrichment of data which allows
for it to be shared and reused across application, enterprise,
and community boundaries. A generic and extensible DL in-
frastructure for handling production data in an IoP is missing.

Foremost, the DL infrastructure for an IoP should be able
to ingest, store, integrate, and query the data according to the
specific process requirements within the network. Moreover,
the data lake should be able to store heterogeneous ingested
production data (structured data, semi-structured, unstructured
data) in appropriate storages to reduce the transformation cost
and facilitate easy information extraction later on. Further-
more, the data lake should not only satisfy the known pro-
duction requirements, it should also be generic and extensible
for possible future needs. Lastly, semantic enrichment, e.g.,
using Semantic Web technologies [37], should be employed
to facilitate integration across organizational boundaries, dif-
ferent content, information applications, systems, and domains
and enable the creation of machine-actionable knowledge.

To tackle these challenges, data lake technologies, such
as Constance [33], [38], should be combined with stream
processing capabilities and semantic enrichment [39], en-
abling scalable data processing and storage for production and
opening up further opportunities for continuous and adaptive
improvement of manufacturing processes.

C. Secure Industrial Collaboration

The vision of an IoP highly encourages industrial collab-
oration to maximize the benefits of cross-domain knowledge
transfers. These collaborations can exist between companies
along one supply chain or even between companies that imple-
ment similar processes (e.g., processing of the same material
or operating related machinery): They exchange information to
increase their revenue by adapting and improving their individ-
ual process. Due to confidentiality requirements, these entities
should only interact over secured dedicated communication
channels as their individual process knowledge is very valu-
able. Furthermore, they might be interested in masking their
identity to hide their implemented processes from other entities
or even competitors (e.g., to hinder conclusions about their
individual process progress and to conceal themselves as a
target for reverse-engineering attacks). However, depending on
the granularity of exchanged information, de-anonymization is
still possible regardless of any obfuscation.

To provide data security when utilizing, processing, and
comparing confidential data, today, mainly two privacy-
preserving approaches exist. First, factories can securely of-
fload their computations to an (even untrusted) cloud without
revealing their data [40], i.e., any operations are conducted
on the encrypted data and, therefore, the (untrusted) third

party is unable to access the processed data. Alternatively,
collaborators can rely on secure multi-party computation to
jointly compute a result without making individual inputs
public [41]. Using such approaches, manufactures could, e.g.,
perform anonymous comparisons of the efficiency of their
production processes [42]. To protect the privacy of different
stakeholders, an IoP can initially protect participating entities
through pseudonyms. In conjunction with digital signatures,
such a system can also ensure data integrity [43] and, hence,
allow for a secure industrial collaboration.

To address more advanced challenges in secure indus-
trial collaborations, additional effort is required. First, the
intended collaboration of an IoP might exceed today’s privacy-
preserving processing capabilities [44] and therefore render
current implementations infeasible as the computations and
models within an IoP are significantly more complex. There-
fore, research must propose approaches that also support
industrial models and data streams with vast amounts of het-
erogeneous information, potentially stored in data lakes, while
still providing data security and privacy [45]. Second, account-
ability along the supply chain is an important aspect to certify
the quality of goods. To this end, the data security aspect of an
IoP also refers to new mechanisms that provide accountability
and to conduct plausibility checks to protect companies from
fake data. Third, on a different level, apart from tit-for-tat
incentives for data sharing (as successfully applied in e.g., the
BitTorrent protocol [46]), monetary transactions can motivate
an information exchange of private (local) data. Here, the
purchasing entity might be able to link these monetary flows
to a stakeholder pseudonym, i.e., they can degrade the payee’s
privacy. Consequently, an IoP is in need of a secure privacy-
sensitive system to handle smart payments. Fourth, a secure
bootstrapping of collaborations (without a centralized third-
party) between previously unaffiliated companies remains un-
solved. Previously non-cooperating entities face the challenge
of identifying collaborators that could potentially help them
to benefit from cross-domain collaboration. For example, a
company operating a particular machine is usually unaware
of other companies using the same machine. Ideally, such
a design limits the influence of potentially “more powerful”
entities, such as the machine manufacturers, who might have
an incentive to interfere with such a direct communication
between their respective customers.

IV. CONCLUSION AND FUTURE RESEARCH CHALLENGES

Through cooperation, manufacturing companies can create
a new level of cross-domain collaboration as envisioned by an
Internet of Production (IoP) to reduce product development
costs, increase gains in profit margins, as well as generally
improve product quality and safety. In this paper, we presented
three distinct use cases (a fine blanking line, a high pressure
die casting process, and a connected job shop) and based on
their requirements, we derived a set of research goals for
an underlying infrastructure: (i) real-time control of tightly
integrated production processes, (ii) storing and processing
heterogeneous production data, and (iii) secure privacy-aware
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collaboration in production. These factors are crucial to un-
leash the full potential of a global interconnection of pro-
duction systems with the purpose of cross-domain knowledge
transfers. We surveyed existing approaches that might help
with our identified research goals. For example, in-network
processing and edge clusters as well as data stream processing
and data lakes have the potential to implement today’s vision
of an IoP. However, so far, no existing concept can solve all
derived challenges as past research did not envision a global
collaboration between manufacturing companies.

We proposed three objectives that are key factors when
developing a new infrastructure that enables an IoP: (i) seam-
less low-latency analysis of data, (ii) scalable data processing
and storage, and (iii) secure industrial collaboration. These
approaches open up a completely new field of exciting future
research challenges. We especially expect significant chal-
lenges wrt. interoperability when integrating today’s devices
and machines into a global infrastructure as well as adapt-
ability when considering future devices and machines with
yet unforeseen properties and demands. Hence, the overall
infrastructure must support (secure) adaptability even after an
initial (limited or local) rollout, especially in collaborative sce-
narios at global scale. Furthermore, increasing computational
and storage resources will enable new production use cases
based on complex operations that are not supported by today’s
networks, models, and available resources. Consequently, an
infrastructure for the IoP must also be able to adapt to novel
use cases. To conclude, realizing the infrastructure for a
globally interconnected IoP is a challenging tasks that requires
a tremendous interdisciplinary effort.
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