
Thwarting Unwanted Blockchain Content Insertion

Roman Matzutt, Martin Henze, Jan Henrik Ziegeldorf, Jens Hiller, Klaus Wehrle
Communication and Distributed Systems

RWTH Aachen University
Aachen, Germany

Email: lastname@comsys.rwth-aachen.de

Abstract—Since the introduction of Bitcoin in 2008, block-
chain systems have seen an enormous increase in adoption.
By providing a persistent, distributed, and append-only ledger,
blockchains enable numerous applications such as distributed
consensus, robustness against equivocation, and smart con-
tracts. However, recent studies show that blockchain systems
such as Bitcoin can be (mis)used to store arbitrary content. This
has already been used to store arguably objectionable content
on Bitcoin’s blockchain. Already single instances of clearly
objectionable or even illegal content can put the whole system
at risk by making its node operators culpable. To overcome
this imminent risk, we survey and discuss the design space of
countermeasures against the insertion of such objectionable
content. Our analysis shows a wide spectrum of potential
countermeasures, which are often combinable for increased
efficiency. First, we investigate special-purpose content detectors
as an ad hoc mitigation. As they turn out to be easily evadable,
we also investigate content-agnostic countermeasures. We find
that mandatory minimum fees as well as mitigation of trans-
action manipulability via identifier commitments significantly
raise the bar for inserting harmful content into a blockchain.

Keywords-Bitcoin, blockchain, security, objectionable con-
tent, countermeasure

I. INTRODUCTION

Blockchain-based cryptocurrencies such as Bitcoin en-
joy unbroken popularity, averaging at over 280 000 daily
confirmed transactions in 2017 [1]. This popularity is also
reflected by the size of the cryptocurrencies’ underlying
peer-to-peer networks and their user base: Bitcoin’s network
size has doubled since 2015 [2], while its number of users
is peaking in the millions [3]. Cryptocurrencies, especially
Bitcoin, have thus become a well-accepted trading medium
due to their security, timeliness, and decentralization.

Besides offering a platform for financial transactions,
recent work [4]–[6] shows that Bitcoin’s blockchain can
also be used as an anonymous and irrevocable content
store. By inserting short, non-financial messages, Bitcoin
can be extended to realize additional services, e.g., digital
notary services [7], secure releases of cryptographic com-
mitments [8], or non-equivocation schemes [9].

While this initially unintended extensibility appears
promising, and in fact 1.4% of Bitcoin transactions hold
non-financial data [6], it can severely compromise block-
chain systems: A recent study [6] reveals that over 1600 files
have been irrevocably engraved into Bitcoin’s blockchain,

e.g., to be shared in a censorship-resistant manner. These
files range from simple text to over 155 images, source
codes, and PDF files. Any objectionable content, e.g., illegal
pornography, in such files is then inevitably distributed to all
nodes of the cryptocurrency’s underlying peer-to-peer net-
work. It is expected that court rulings in major jurisdictions
such as Germany and the USA will then find node operators
culpable of possessing objectionable content [6]. As a con-
sequence, the node operators must delete affected parts of
the blockchain, thereby breaking the blockchain’s integrity
and verifiability. The insertion of objectionable content has
thus the potential of jeopardizing cryptocurrencies, as all
users ultimately depend on this verification. Indeed, recent
research [6] finds that, while most content is likely harmless,
Bitcoin’s blockchain already today contains content that is
objectionable in many jurisdictions, e.g., an image of a nude
young woman or hundreds of links to child pornography.

Reacting to the evident threats, in this work we explore
potential countermeasures to prevent insertion of objection-
able content w.r.t. blockchain-based cryptocurrencies, using
Bitcoin as a real-world working example. We first analyze
the harmfulness of different types of blockchain content
and find that short, token-like messages enable beneficial
use cases while insertion of arbitrarily-sized content must
be prevented and we acknowledge that full prevention of
content insertion is impossible. We hence focus on coun-
termeasures that either heuristically hinder the insertion of
large chunks of arbitrary data or financially disincentivize
content insertion to a freely tunable degree. Our results
are two-fold. One the one hand, we find that the naı̈ve
approach of targeted content detection constitutes a first ad
hoc solution against objectionable content, but it is easily
evadable. On the other hand, simple adaptions to Bitcoin,
such as introducing mandatory minimum fees or replacing
manipulable blockchain identifiers, can effectively mitigate
objectionable blockchain content with moderate overheads.

II. BACKGROUND

In this section, we provide the technical background on
Bitcoin required for the remainder of this paper.

Bitcoin Primer. Bitcoin [10] was the first digital currency
to rely on the blockchain. The blockchain is a persistent,
distributed, and append-only ledger of events, serving in

Bitcoin as distributed, immutable record of financial transac-
tions between pseudonymous Bitcoin addresses. A Bitcoin
address is controlled by a cryptographic key pair, which is
used to access and transfer the associated bitcoins. A trans-
action collects funds from one or more addresses, the inputs,
and reassigns them to one or more other addresses, the
outputs. To prevent double spending of bitcoins, transactions
are only considered valid if they are immutably recorded in
the blockchain. Transaction inputs and outputs are realized
using a script language that allows authenticating payments
via addresses’ public keys or hash values thereof.

Blockchain Maintenance. The blockchain is maintained
by the Bitcoin network in a distributed manner to reach
consensus about valid transactions among honest nodes [11]:
Users propose their transactions to the network, which are
then added to the blockchain by special nodes, the miners,
via a proof-of-work scheme. To ensure correctness of the
blockchain and its transactions, the full nodes of the Bitcoin
network independently verify all transactions and blocks
they receive and reject incorrect information. Furthermore,
full nodes maintain a full copy of the whole blockchain to
serve newly joining nodes. Assuming an honest majority
(among full nodes), the longest blockchain constitutes the
Bitcoin network’s consensus.

Incentives and Fees. Miners are incentivized to perform
the proof of work via block rewards. Each miner includes a
coinbase transaction in her blocks, which rewards her with
a prescribed number of freshly minted bitcoins. As the block
reward is exponentially decreasing to limit the total supply of
bitcoins, transaction fees are a second tier of miner rewards.
Miners may collect excess bitcoins from all transactions
in their blocks as a form of tip, which is paid as a byte-
wise fee. As overpaying fees incentivizes miners to consider
a transaction faster, recommendations on transaction fees
emerged [12]. For instance, to get a transaction included into
the blockchain during December 2017 within an hour, it is
recommended to pay on average 423 satoshi per Byte (B),
i.e., 16.14USD for an average transaction of 250B size [12].

Content Insertion. A comprehensive study on how Bit-
coin transactions can be augmented with arbitrary content
is given in [6]. While short messages of up to 100B can
be added via intended mechanisms (coinbase transactions
and OP_RETURN), transactions can be manipulated to hold
arbitrarily-sized content such as images or archives. Predom-
inantly, content inserters arbitrarily replace the blockchain
identifiers, usually 20B-long cryptographic hash values of
public keys, of multiple outputs with their content, poten-
tially making the output unspendable [6]. Using encodings
such as Apertus [13] allows spreading content over multiple
transactions while retaining efficient decoding [6].

III. SCENARIO AND PROBLEM STATEMENT

In this section, we define the underlying scenario for
blockchain content insertion with the goal of designing

countermeasures against such practices. We first outline
that different classes of arbitrary blockchain content can be
harmful or beneficial to cryptocurrencies (Section III-A). We
then discuss related work (Section III-B) and show that it
is impossible to prevent insertion of all unintended content
into the blockchain (Section III-C). From this analysis, we
distill the problem statement for this paper (Section III-D).

A. Harmfulness of Arbitrary Blockchain Content

Current blockchain designs allow augmenting user-
generated transactions with short chunks of arbitrary content
as described in Section II. Notably, manipulating transac-
tions allows inserting arbitrary amounts of unintended data
even into special-purpose blockchains, e.g., storing non-
financial data on cryptocurrency blockchains. In this paper,
we refer to Bitcoin as our real-work working example.

If a miner includes content-holding transactions into her
blocks, the content is irrevocably distributed to all full
nodes. Recent research [6] shows that this puts full node
operators at risk: Although court rulings are yet to come, it is
expected that major jurisdictions could find that maintaining
a blockchain containing objectionable content, e.g., illegal
pornography, constitutes possession of illegal documents [6].
Full node operators hence face a dilemma: If they keep
maintaining the blockchain, they may become culpable. Yet,
if they delete content-holding transactions from their local
blockchain, they break its integrity and thus its verifiability.

Deleting blockchain content locally to comply with le-
gal obligations severely impedes the health of the Bitcoin
network. It is critical that newly joining full nodes obtain
an intact blockchain copy in order to successfully synchro-
nize with the Bitcoin network. Furthermore, also the users
of lightweight solutions such as online wallets ultimately
depend on full nodes performing the verification process on
their behalf. Hence, we argue that objectionable, i.e., illegal-
to-possess, blockchain content must be proactively prevented
from entering the blockchain to the largest extent possible.

However, only certain content can jeopardize blockchain
systems. In fact, the outlined culpability only holds if content
is objectionable and easily extractable from the blockchain.
For instance, full pictures of illegal pornography, as one the
most ubiquitously objected content type, can be stored on the
blockchain using tens of kilobytes [14]. The most imminent
risk therefore stems from arbitrary-length and easy-to-read
content, especially if it is easily accessible via standard
software after extracting it from the local blockchain copy.

Contrarily, short pieces of blockchain content are less
likely to be harmful as they cannot hold objectionable
content directly. Even short links to objectionable content do
not put full node operators at risk of possessing said content:
As the content is not stored directly on the blockchain,
operators do not own a physical copy of it. Furthermore, they
could even cooperate with local authorities to take down the
target server without impeding the blockchain integrity.

As a consequence, we deem short-sized content (≤ 1KiB)
to have a lower harm potential and consider very short con-
tents (≤ 100B) harmless. These thresholds may, however,
require adaption in the future, e.g., due to court rulings.

On the contrary, short-sized blockchain content has proven
to fuel innovation and create new applications. A wide range
of applications now rely on engraving short tokens into the
blockchain to leverage its security model for off-blockchain
services. By adding hash values of files, it becomes publicly
verifiable that a given document existed by the time the
transaction was added to the blockchain [7]. Similarly,
the blockchain can become a general-purpose event ledger,
e.g., for non-equivocation logs [9]. Allowing short text
messages, e.g., meta information, on the blockchain further-
more enables services such as distributed management of
assets [15] or key-value pairs [16] and the execution of smart
contracts [17]. Although arbitrary-length blockchain content
can also be beneficial, e.g., for whistleblowers to unveil
misconducts in a censorship-resistant manner, a single piece
of objectionable content can jeopardize the whole system.
Hence, the risks introduced by arbitrary-length blockchain
content by far outweigh the potential benefits.

It is thus crucial to face the currently disregarded risks
of arbitrary-length, easy-to-read blockchain content and to
design countermeasures. However, the benefits of short
blockchain messages require such designs to trade off secu-
rity against innovation by gauging which content is harmless.

B. Related Work

Monitoring incoming data as well as recognizing and
filtering unwanted content is a classical application of fire-
walls, intrusion detection systems, and spam filters [18]–
[21], which have drastically improved security and quality
of service within their respective domains. However, their
often high adaptability requirements are commonly tackled
via supervised or automated learning of what content should
be filtered. This is challenging w.r.t. blockchain systems as
it must be guaranteed that learning is deterministic and all
overhead from computation-intense local checks multiply
over the whole network and should be avoided. However,
we deem a further investigation promising future work.

A new line of blockchain-based systems promises to avoid
the problems of objectionable blockchain content altogether
by persistently maintaining account balances instead of the
whole transaction ledger [22]–[24]. As transaction outputs
are separated during the balance update, it is hard to link
individual chunks of blockchain content to each other to
reveal the full content. Yet, forfeiting the event history con-
siderably limits potential applications. For instance, notary
services cannot be realized via such blockchains. The risks
of content insertion must thus be tackled for all blockchains.

Similarly, redactable blockchains [25] emerged, which
enable after-the-fact alternation and deletion of transactions.
These blockchains use chameleon hash functions [26] to

link blocks such that trusted entities or quorums can alter
them. The arising trust issues can be tackled by issuing
decentralized votes on blockchain alternations [27], but
again, this enhancement is incompatible to existing systems.

C. Impossibility of Rigorous Blockchain Content Filtering

We have shown that objectionable content puts blockchain
systems at risk. However, as we argue in this section,
unintended data cannot entirely be prevented from entering
public blockchains. This circumstance stems from the fact
that public blockchains are pseudonymous. Full nodes do not
verify whether an alleged receiver in a proposed transaction
does indeed exist. As of now, content can thus be easily
inserted by manipulating the receiver’s identifiers. E.g.,
Bitcoin allows inserting tens of kilobytes of arbitrary data
per transaction using multiple manipulated outputs [6].

Unfortunately, such manipulation cannot be comprehen-
sively detected by full nodes: Users can, and are even
encouraged to [10], refresh their Bitcoin addresses arbitrarily
often. Hence, a user willing to insert blockchain content
can continuously create new Bitcoin addresses for herself
by brute-forcing private keys such that the content can be
encoded via, e.g., the first few bytes of each output used.
The user can subsequently craft a transaction that sends
arbitrary amounts of bitcoins to each of her chosen outputs
and publish it. This transaction is valid and indistinguishable
from non-manipulated transactions. Furthermore, full nodes
cannot link the transaction outputs to the single user during
transaction validation due to the lack of centralized user-
identity associations. Hence, it is impossible for full nodes to
detect and reject all transactions holding unintended content.

In the following, we thus explore heuristics that reject
potentially harmful content, either by analyzing transactions
to reveal content, e.g., plain text or image files, or by
disincentivizing insertion of arbitrarily-sized content.

D. Problem Statement

We argued that persistently storing arbitrarily-sized con-
tent puts blockchain systems at risk while short data pieces
have proven beneficial. Furthermore, we have shown the
impossibility of preventing all unintended blockchain con-
tent. The goal of this paper is therefore to explore the
design space of countermeasure heuristics that (i) prevent
harmful content from entering the blockchain, (ii) are easily
deployable even for established systems such as Bitcoin, and
(iii) are adaptable in case that also short pieces of blockchain
content reveal unforeseen risks. To this end, content pieces
shall be (i) allowed if very short (≤ 100B), (ii) tolerated
if medium-sized (≤ 1KiB), and (iii) effectively prevented
if arbitrarily-sized. We note that these thresholds can be
freely adapted if deemed necessary, e.g., by court rulings.
As complete prevention of content insertion is impossible,
our countermeasures must render the insertion of arbitrarily-
sized content either computationally or financially infeasible.

0.00 0.25 0.50 0.75 1.00

Text Detection Threshold

10−8

10−6

10−4

10−2

100

F
a

ls
e

P
o

si
ti

ve
P

ro
b

a
b

il
it

y

Figure 1: Expected false-
positive rate for text detec-
tion in a 20B-long identifier

100 101 102 103 104

Outputs per Transaction [#]

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
o

f
D

a
ta

Figure 2: Cumulative distri-
bution of numbers of out-
puts per transaction

IV. COUNTERMEASURES AGAINST CONTENT INSERTION

To effectively mitigate risks of blockchain content, we
identify countermeasures that limit the amount of insertable,
unintended content or make such insertion financially in-
feasible in accordance with our problem statement in Sec-
tion III-D. As a representative working example, we consider
countermeasures that are easily applicable to Bitcoin. After
proposing evaluation criteria for the countermeasure quality
(Section IV-A), we propose to (i) introduce naı̈ve content
filtering (Section IV-B), to (ii) adapt the fee model (Sec-
tion IV-C), and to (iii) include proofs of key authenticity
within the transactions themselves (Section IV-D).

A. Evaluation Criteria

We evaluate our countermeasures’ efficiency against in-
sertion of harmful blockchain content w.r.t. filtering quality,
usability, network burden, and deployability. High filtering
quality means that insertion of harmful content (as in Sec-
tion III-D) becomes either computationally or financially
infeasible. A countermeasure is usable if it does not impede
normal system use. A low network burden is achieved
if neither the blockchain’s nor the Bitcoin network’s per-
formance is decreased significantly by a countermeasure.
Finally, a countermeasure should be deployable via only
minor changes to already-established blockchain systems
(changing transaction acceptance always requires an update).

B. Filtering Content-holding Transactions

An intuitive countermeasure against unintended block-
chain content is the systematic analysis of proposed trans-
actions and subsequent rejection of content-holding trans-
actions by full nodes and miners. As discussed in Sec-
tion III-A, the most imminent threat stems from arbitrary-
sized content that is objectionable and easily accessible, e.g.,
common files such as images. We thus first explore the naı̈ve
approach of adding content detectors to Bitcoin’s transaction
verification to detect and reject content-holding transactions.

To detect easily accessible content in transactions, we
propose (i) a text detector to identify transactions carrying
text or ASCII-based files and (ii) a known-file detector to
identify binary files such as images or archives.

Detecting large fractions of printable text within a trans-
action prevents custom text as well as text-based files,

e.g., HTML pages or Python scripts, from entering the
blockchain. We hence propose a text detection threshold
t ∈ [0, 1] to check whether individual transaction outputs
consist of large fractions of printable ASCII characters.

To choose t, we consider the detector’s expected false-
positive rate (FPR). False positives can occur as block-
chain identifiers may contain printable ASCII characters
by chance. Figure 1 shows the expected FPR for random
blockchain identifiers (20B length, 95 of 256 printable
characters) and varying thresholds t. We observe that only
high thresholds lead to negligible FPRs: While t = 0.75
still yields an expected FPR of 0.064%, t = 0.9 yields
an expected FPR of 1.42× 10−4 %. As this confirms the
intuition from previous works [6], [28], we suggest t = 0.9.

Unfortunately, reusing Bitcoin addresses, e.g., to collect
donations, can cause the text detector to reject valid pay-
ments if the corresponding blockchain identifier is a false
positive. Hence, also small expected FPRs can impede the
usability seriously as such identifiers are potentially used
heavily. This is illustrated, e.g., by one Bitcoin address1,
which is a false positive w.r.t. our text detector but received
bitcoins from over 370 transactions as of January 8th, 2018.

We thus propose to further restrict the text detector to
reject only transactions with more than 5 distinct text-
holding outputs (100B worth of content). This way, only
short and thus harmless texts can be inserted. Notably, most
of these texts can already be inserted using an OP_RETURN
output (at lower costs). Hence, the text detector mitigates
harmful text insertion without discriminating honest users.

Contrarily, preventing insertion of binary files is not fea-
sible via this approach. While file types can be determined
using magic numbers, i.e., byte sequences that are unique to
the respective file type, these sequences are often only few
bytes long [29]. Hence, the expected FPR increases drasti-
cally. Although the accuracy can be improved by considering
more characteristic features, e.g., default headers, content
inserters can evade this overly specific detector more easily.
They can, e.g., introduce easily revertible modifications to
the content such as a deterministic padding.

Evaluation. Content detectors can be fine-tuned specif-
ically to reject unwanted content with a low overhead for
full nodes. Furthermore, usability is guaranteed since we
detect false positives with high probability. Thus, honest
users are not affected by the detector. However, the detector’s
filtering quality is insufficient for binary files and we expect
a wide range of evasion schemes to emerge. This would
imply a poor deployability, as novel evasion schemes result
in frequent mandatory updates for all honest full nodes. In
conclusion, explicit content detection constitutes a first line
of defense against unwanted blockchain content and works
for text-based content. Mitigating the insertion of unwanted
binary files, however, requires more general approaches.

1Bitcoin address: 154QWLN3Uz43nHMAM7ioYUx8tkYXdNKDtQ

100 101

Outputs [#]

0

50

100

150

200

F
ee

s
[U

S
D

]

Our scheme
Current fees

0.0

0.2

0.4

0.6

0.8

1.0

F
ee

s
[U

S
D

]

(a) Piecewise constant growth

100 101

Outputs [#]

0

1000

2000

3000

F
ee

s
[U

S
D

]

Our scheme
Current fees

0.0

0.2

0.4

0.6

0.8

1.0

F
ee

s
[U

S
D

]

(b) Piecewise linear growth

Figure 3: Proposed minimum fees for different growths β(n)

C. Mandatory Minimal Transaction Fees

Bitcoin transaction fees are usually paid per byte, with
a current recommendation of 423 satoshi/B (16.14USD
for the average 250B-large transaction) as of December
2017 [12]. Although such fees seem high, new content is
actively being added [6]. We thus propose to adapt Bitcoin’s
underlying fee model to hinder content insertion.

As Figure 2 shows, the vast majority of all nearly 255
million transactions (as of August 2017) has at most 50
outputs (99.73%). Of all transactions, 97.22% even have
5 outputs or fewer and 91.77% have at most 2 outputs.

Thus, we propose to enforce mandatory minimum fees to
penalize large transactions and thus disincentivize content
insertion. Given a proposed transaction t with size st and
number of outputs nt, we propose the simple fee function:

F (t) = α · (st + β(nt) · nt).

Here, α is the byte-wise base fee and β(n) is a piecewise-
defined function depending on thresholds Ts and Tm that
distinguish small, medium-sized, and large output numbers.
As an example, Figure 3 shows the resulting fees for α =
423 satoshi/B, thresholds Ts = 6, Tm = 51 and

βC(n) =


0 n < Ts,m

10 n ∈ [Ts, Tm]

20 n > Tm

in Figure 3a and βL(n) =
∑n

0 βC(n) in Figure 3b (the
dashed lines denote Ts and Tm). While we leave the exact
parametrization open, our choices for β(n) to be piecewise
constant (βC(n)) or piecewise linear (βL(n)) showcase the
design space for mandatory minimum fees. Neither approach
impedes small transactions (over 97% of all transactions),
but both penalize larger transactions in varying degrees.

For instance, using a piecewise constant fee growth per
output, a borderline-large transaction (50 outputs) would
inflict additional 29USD of fees, while the linear fee growth
yields roughly 1310USD in additional fees, i.e., legitimate
creators of medium-sized transactions are penalized more.
However, the increase in penalty fees grows gradually for
medium-sized transactions. Content inserters, contrarily, are
especially punished by linear-growth fee penalties: E.g.,
storing a small JPEG image of 20KiB (1024 outputs), would
cost the content inserter roughly 1.19× 106 USD in fees.

Evaluation. Mandatory minimum fees are promising to
disincentivize content insertion. They are easily deployable
(a single check during transaction verification) and have neg-
ligible overhead as full nodes only must check whether the
transaction pays at least the required fees. However, manda-
tory fees have an inherent trade-off between usability and
filtering quality: If the fee model is tuned towards rejecting
even small amounts of content, honest users currently relying
on large transactions, e.g., exchange services, are potentially
penalized. Hence, the fee model’s parametrization must be
thoroughly evaluated prior to its deployment.

D. Self-Verifying Account Identifiers

We propose a simple adaption of standard Bitcoin trans-
actions to make content insertion computationally infeasible.
We approximate the best case of infeasible content insertion
outlined in Section III-C by only recording cryptographi-
cally non-manipulable values on the blockchain.

Currently, content inserters can easily replace mutable
identifiers in their transaction outputs with arbitrary values.
Full nodes are unable to validate the correctness of these
identifiers until they receive a future transaction attempting
to spend a particular output. Hence, full nodes are forced to
accept manipulated transaction outputs into the blockchain.
We hence propose to replace manipulable identifiers of trans-
action outputs with identifier commitments (ICs). Namely,
the IC C(x) is obtained by interpreting an identifier x as
a private key over Bitcoin’s elliptic curve secp256k1 and
signing the corresponding public value x·G (G the generator
of secp256k1) together with a salting nonce r via ECDSA:

C(x) := (x·G, r, sig(x·G‖r, x))

Replacing x with C(x) ensures that (a possibly content-
hiding) x never appears on the blockchain. This hiding of x
is sufficient for outputs, i.e., inputs are not manipulable as
they can only be created by proving possession of a private
key. To hinder content insertion, x must not be efficiently
computable from C(x) and C(x) must not enable content
insertion by other means than brute-forcing it. To this end,
we rely on ICs to be one-way, fresh, and self-verifying.

The one-way property of x ·G guarantees that x cannot
be computed efficiently from x ·G. Thus, x ·G can safely
be added to the blockchain. Furthermore, x is unknown for
manipulated x ·G and hence the signature sig(x ·G‖r, x)
cannot be computed. Thus, it is computationally infeasible
to compute a valid C(x) hiding content in x·G.

Freshness of C(x) is required to hamper the creation of
rainbow tables for identifiers x that yield ICs well-suited
for content insertion, e.g., a reusable file header. We ensure
freshness via adding the salt r = CRC32(t1‖...‖tn), where
ti is the hash value identifying the previous, already mined
transaction referenced by the i-th input. As r depends on pre-
decessor transactions, it changes for almost all transactions,
which makes creating rainbow tables unprofitable. Moreover,

P2UC: P2PKH:
Input Script: [signature] [signature]

[public key] [public key]
Output Script: OP_DUP OP_DUP

OP_HASH256 OP_HASH160
OP_COMMIT
[commitment x*G] [public key hash]
[salt r]
[sig(x*G||r, x)]
OP_DROP
OP_DROP
OP_EQUALVERIFY OP_EQUALVERIFY
OP_CHECKSIG OP_CHECKSIG

Figure 4: P2UC script; P2SC replaces P2SH analogously.

it prevents content storage in r itself. The 4B short salt
ensures that the blockchain is not bloated unnecessarily.

Finally, the self-verifying property ties C(x) to x such that
only possession of the private value x enables the spending
of funds. Furthermore, it ensures that x ·G, r, and the
signature sig(x ·G‖r, x) cannot be manipulated to contain
content without invalidating the signature.

Implementation. ICs can be easily integrated into Bitcoin
by adding only a new OP_COMMIT operation to it’s stack-
based scripting language. This way, we can replace the most
common transaction scripts, P2PKH and P2SH, with non-
manipulable alternatives: Pay-to-User-Commitment (P2UC)
and Pay-to-Script-Commitment (P2SC).

Figure 4 exemplarily shows the transition from P2PKH
to P2UC (P2SC analogously replaces P2SH). We replace
the manipulable identifier x with its IC C(x). However, full
nodes must verify the correctness of C(x) using the salt r
and the signature sig(x ·G‖r, x) before the transaction is
added to the blockchain. Hence, this check is independent
from actually executing the script once the transaction output
should be spent. Instead, full nodes only need to verify the
correctness of x ·G to authenticate payments. To this end,
we introduce OP_COMMIT, which replaces the current top
stack element x with x·G. We ignore the signature and salt
during payment verification via the OP_DROP operations.

Performance. We evaluate our scheme w.r.t. validation
and payment verification times and transaction sizes.

Validating a IC requires one additional signature verifi-
cation, which takes 0.4ms on average on a commodity PC
(Intel Core 2 Quad Q9400 CPU running at 2.66GHz with
4GiB RAM). Hence, full nodes need only 3.8 s to validate
a proposed block consisting of roughly 1900 transactions
(average over all blocks of 2017 [1]) with at most 5 outputs
each (cf. Section IV-C). As new blocks are only published
on average every 10min [11], this additional check is
clearly feasible for full nodes even for exceptionally large
transactions with up to 50 outputs each (38 s).

Introducing ICs slightly changes payment verification:
A full node must execute OP_COMMIT and compute
OP_HASH256 instead of OP_HASH160. Computing one IC
takes 0.2ms on average and, notably, OP_HASH256 out-
performs OP_HASH160 for small input sizes. Furthermore,
computing the salt as a CRC32 checksum is negligible.
Hence, ICs do not impede payment verification.

Replacing blockchain identifiers with ICs increases the
overall transaction size. An IC is 112B long (x·G: 33B; r:
4B; sig(x·G‖r, x): 77B; 4B for additional operations), in
contrast to the 20B size of the unprotected identifier. Hence,
a standard (P2PKH) transaction consisting of one input
and two outputs grows from 225B to 409B. Blocks can
therefore hold up to 2445 transactions, which comfortably
sustains the current average of 1900 transactions per block.

Evaluation. ICs have a high filtering quality as they
reduce insertable content to the theoretic minimum (cf.
Section III-C). Furthermore, usability is not impeded: Users
only need to additionally compute the IC, which is clearly
feasible for frequencies of transaction creations expected
for individual users. Even though we need to introduce
OP_COMMIT and extend Bitcoin’s transaction validation
process, we argue that the required changes are only minor
and thus ICs are well-deployable. ICs inevitably increase
transaction sizes. However, the Bitcoin network can still
sustain its transaction throughput. Thus, the overhead is
worth the IC-based protection against content insertion.

V. CONCLUSION

The threat of inserting arbitrary content into blockchains
was only recently recognized: Objectionable content can be
anonymously and irrevocably inserted and thus distributed
to the nodes of a blockchain-based system, whose operators
can then be culpable for possessing the content.

We proposed conceptual countermeasures to empower the
nodes of a blockchain-based system to heuristically reject
transactions holding unintended content with high proba-
bility. Namely, we propose a content detector to identify
and reject content-holding transactions, mandatory mini-
mum transaction fees to make content insertion econom-
ically infeasible, and a computationally non-manipulatable,
commitment-based replacement for easily manipulable iden-
tifiers in transaction outputs.

Until our countermeasures fully complement each other,
they can be deployed gradually, e.g., the content detector is
immediately deployable. Nevertheless, content inserters can
quickly adapt to its strategy and evade detection. It is thus
only an effective ad hoc defense that should soon be accom-
panied by a fee model that disincentivizes large transactions
which are suited to hold objectionable content. Furthermore,
using non-manipulable blockchain identifiers limits content
insertion to the theoretical minimum at moderate costs.

ACKNOWLEDGMENTS

This work has been funded by the German Federal
Ministry of Education and Research (BMBF) under funding
reference number 16KIS0443. The responsibility for the
content of this publication lies with the authors, who would
also like to thank the German Research Foundation DFG for
the kind support within the Cluster of Excellence “Integra-
tive Production Technology for High-Wage Countries”.

REFERENCES

[1] Blockchain.info. (2011) Bitcoin Charts & Graphs. Accessed
02/04/2018. [Online]. Available: https://blockchain.info/
charts

[2] A. Yeow, “Bitnodes: Global Bitcoin Nodes Distribution,”
2018, accessed 02/04/2018. [Online]. Available: https:
//bitnodes.earn.com/dashboard/?days=730

[3] D. D. F. Maesa, A. Marino, and L. Ricci, “Data-driven
analysis of Bitcoin properties: exploiting the users graph,”
International Journal of Data Science and Analytics, pp. 1–
18, Sep. 2017.

[4] K. Shirriff. (2014) Hidden surprises in the Bitcoin blockchain
and how they are stored: Nelson Mandela, Wikileaks,
photos, and Python software. Accessed 02/04/2018.
[Online]. Available: http://www.righto.com/2014/02/ascii-
bernanke-wikileaks-photographs.html

[5] R. Matzutt, O. Hohlfeld, M. Henze, R. Rawiel, J. H. Ziegel-
dorf, and K. Wehrle, “POSTER: I Don’t Want That Content!
On the Risks of Exploiting Bitcoin’s Blockchain as a Content
Store,” in Proceedings of the 23rd ACM Conference on
Computer and Communications Security (CCS). ACM, 2016.

[6] R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf,
D. Müllmann, O. Hohlfeld, and K. Wehrle, “A Quantitative
Analysis of the Impact of Arbitrary Blockchain Content on
Bitcoin,” in Proceedings of the 22nd International Confer-
ence on Financial Cryptography and Data Security (FC).
Springer, 2018.

[7] PoEx Co., Ltd. (2015) Proof of Existence. Accessed
02/04/2018. [Online]. Available: https://poex.io

[8] J. Clark and A. Essex, “CommitCoin: Carbon Dating Com-
mitments with Bitcoin,” in Proceedings of the 16th Inter-
national Conference on Financial Cryptography and Data
Security (FC). Springer, 2012, pp. 390–398.

[9] A. Tomescu and S. Devadas, “Catena: Efficient non-
equivocation via bitcoin,” in IEEE Symposium on Security
and Privacy (S&P). IEEE, 2017, pp. 393–409.

[10] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash
System,” Tech. Rep., 2008, accessed 02/04/2018. [Online].
Available: https://bitcoin.org/bitcoin.pdf

[11] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and
E. W. Felten, “SoK: Research Perspectives and Challenges
for Bitcoin and Cryptocurrencies,” in IEEE Symposium on
Security and Privacy (S&P). IEEE, 2015, pp. 104–121.

[12] (2016) Bitcoin Transaction Fees. Accessed 02/04/2018.
[Online]. Available: https://bitcoinfees.info

[13] HugPuddle. (2013) Apertus – Archive data on your favorite
blockchains. Accessed 02/04/2018. [Online]. Available:
http://apertus.io

[14] A. Russell, P. Norby, and S. Bakhshi. (2015) Perceptual
Image Compression at Flickr. Accessed 02/04/2018. [On-
line]. Available: https://code.flickr.net/2015/09/25/perceptual-
image-compression-at-flickr

[15] M. Bartoletti and L. Pompianu, “An analysis of Bitcoin
OP RETURN metadata,” in Proceedings of the 4th Workshop
on Bitcoin and Blockchain Research (BITCOIN), 2017.

[16] Namecoin. Accessed 02/04/2018. [Online]. Available: https:
//namecoin.org

[17] G. Wood, “Ethereum: A Secure Decentralised Generalised
Transaction Ledger,” 2016, accessed 02/04/2018. [Online].
Available: http://gavwood.com/Paper.pdf

[18] M. Roesch, “Snort - Lightweight Intrusion Detection for
Networks,” in Proceedings of the 13th USENIX Conference on
System Administration (LISA). USENIX Association, 1999,
pp. 229–238.

[19] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M.
Smith, “Implementing a Distributed Firewall,” in Proceedings
of the 7th ACM Conference on Computer and Communica-
tions Security (CCS). ACM, 2000, pp. 190–199.

[20] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FLOWGUARD:
Building Robust Firewalls for Software-defined Networks,” in
Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking (HotSDN). ACM, 2014, pp. 97–102.

[21] U. Hanani, B. Shapira, and P. Shoval, “Information filtering:
Overview of issues, research and systems,” User Modeling
and User-Adapted Interaction, vol. 11, no. 3, pp. 203–259,
Aug. 2001.

[22] J. D. Bruce, “The Mini-Blockchain Scheme,” White
paper, 2014, accessed 02/04/2018. [Online]. Available:
http://cryptonite.info/files/mbc-scheme-rev3.pdf

[23] A. Chepurnoy, M. Larangeira, and A. Ojiganov, “Rollerchain,
a Blockchain With Safely Pruneable Full Blocks,” White
paper, 2016, accessed 02/04/2018. [Online]. Available:
https://arxiv.org/pdf/1603.07926

[24] A. Molina and H. Schoenfeld, “PascalCoin Version
2,” White paper, 2017, accessed 02/04/2018. [Online].
Available: https://www.pascalcoin.org/wp-content/uploads/
2017/07/PascalCoinWhitePaperV2.pdf

[25] G. Ateniese, B. Magri, D. Venturi, and E. Andrade,
“Redactable Blockchain – or – Rewriting History in Bitcoin
and Friends,” in IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 2017, pp. 111–126.

[26] J. Camenisch, D. Derler, S. Krenn, H. C. Pöhls, K. Samelin,
and D. Slamanig, “Chameleon-Hashes with Ephemeral Trap-
doors,” in Proceedings of Public-Key Cryptography (PKC),
S. Fehr, Ed. Springer, 2017, pp. 152–182.

[27] I. Puddu, A. Dmitrienko, and S. Capkun, “µchain: How
to forget without hard forks,” IACR Cryptology ePrint
Archive, vol. 2017:106, 2017, accessed 02/04/2018. [Online].
Available: http://eprint.iacr.org/2017/106

[28] “Hyena”. Cryptograffiti.info. Accessed 02/04/2018. [Online].
Available: http://cryptograffiti.info

[29] G. Kessler. (2002) File Signature Table. Accessed 02/04/2018.
[Online]. Available: https://www.garykessler.net/library/file
sigs.html

