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Abstract—Network-based deployments within the Internet of
Things increasingly rely on the cloud-controlled federation of
individual networks to configure, authorize, and manage de-
vices across network borders. While this approach allows the
convenient and reliable interconnection of networks, it raises
severe security and safety concerns. These concerns range from a
curious cloud provider accessing confidential data to a malicious
cloud provider being able to physically control safety-critical
devices. To overcome these concerns, we present D-CAM, which
enables secure and distributed configuration, authorization, and
management across network borders in the cloud-based Internet
of Things. With D-CAM, we constrain the cloud to act as highly
available and scalable storage for control messages. Consequently,
we achieve reliable network control across network borders and
strong security guarantees. Our evaluation confirms that D-CAM
adds only a modest overhead and can scale to large networks.

I. INTRODUCTION

The Internet of Things (IoT) enables the world-wide inter-
connection of “smart things” [1] with the goal of enhancing
important aspects of everyday life, e.g., in pervasive health
care, assisted living, and smart cities [2]. As IoT devices
allow to directly influence the physical world (e.g., Internet-
connected implanted medical devices [3] or robotic arms in
factories [2]), securing access control for these devices is
of utmost importance to prevent severe damage [3]. Tra-
ditionally, configuration, authorization, and management are
realized within individual networks, e.g., via cryptographically
enforced access control lists [4]–[6]. This allows a user to
efficiently manage and secure a single network within the IoT.

However, we observe an increasing trend of interconnecting
previously isolated IoT networks [1]. This trend ranges from
users who want to interconnect their body area network and
home network to companies bridging complete factories via
the Internet [1], [7]. The predominant approaches to realize
these interconnections utilize the high availability and elastic
resources of the cloud [1], [5], [7]. In this setting, the cloud
is used to facilitate management of networks and devices as
well as to configure and authorize access to devices across
network borders. This enables device owners to configure,
authorize, and manage access to their devices across different
networks without having to care about network borders. More
specifically, a user can manage and configure devices in
different networks from a single location without having to
take care of the availability and reachability of individual
devices that, e.g., reside behind a firewall.

Besides these enormous benefits, outsourcing configuration,
authorization, and management of (potentially safety-critical)

devices to the cloud poses huge security threats [8], [9]. These
threats range from a curious cloud provider accessing confi-
dential data to a malicious provider gaining physical control
over safety-critical devices. This includes rogue employees of
the cloud provider and possible security breaches, jeopardizing
the security of all cloud-controlled devices.

Hence, in this paper, we tackle the challenge of securely
realizing configuration, authorization, and management in the
cloud-based IoT. Due to the potential severity of attacks en-
abled by physical control, our prevalent focus lies on prevent-
ing a malicious cloud provider from controlling IoT devices.
To this end, we present D-CAM, our solution for achiev-
ing distributed configuration, authorization, and management
across borders between IoT networks. D-CAM runs on the
user-controlled gateways of individual networks and enables
users to configure their complete federation of IoT networks
from a single location. In contrast to entirely configuring
IoT networks in a central manner, D-CAM reduces the cloud
to act as a highly available and scalable proxy for storing
and forwarding tamper-resistant control messages. This way,
we achieve a reasonable trade-off between the advantages
of the cloud-based IoT and strong security guarantees. More
precisely, we make the following contributions:

1) We analyze the scenario of cloud-interconnected IoT
networks and the resulting security challenges, especially
in the presence of a malicious cloud provider.

2) To account for these security challenges, our distributed
architecture, D-CAM, allows to configure, authorize, and
manage IoT devices across network borders via the cloud.
D-CAM ensures that only authorized parties can config-
ure a user’s IoT devices. Even a malicious cloud provider
cannot tamper with the configuration of IoT devices.

3) To illustrate the feasibility of D-CAM, we fully imple-
mented a working prototype and extensively quantify the
incurred processing and storage overheads. Our results
show that D-CAM can easily scale to large networks.

4) To further increase the security of D-CAM, we ad-
ditionally provide a mechanism for confidentiality of
configuration, authorization, and management messages.

II. CONTROLLING IOT NETWORKS

In this section, we provide a brief overview of our envi-
sioned network scenario. From this we derive the security
challenges for achieving secure configuration, authorization,
and management for cloud-interconnected IoT networks.
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A. Network Scenario and Problem Analysis

In traditional IoT deployments, a network of IoT devices
is connected to the Internet (and possibly the cloud) via
a gateway controlled by the user (in rare cases, an IoT
device acts as the gateway directly). We assume that the
communication within the IoT network is properly secured [4],
i.e., the internal IoT network communication provides authen-
tication and integrity protection. To allow for interaction with
an IoT network over the Internet, it needs to be properly
configured. This involves (i) configuration of individual IoT
devices, (ii) authorization of access to these devices (e.g., for
sensing and actuating), and (iii) management of the overall IoT
network and its structure. In the following, we refer to these
operations as control operations. Handling control operations
is well-studied for traditional single-network deployments.
Such networks are typically configured on the single user-
controlled gateway that connects to the Internet and hence
is predestined to enforce all control-related tasks [4]. For
example, as the gateway manages connections to the Internet,
it will only forward legitimate requests to its IoT devices.

However, as the IoT evolves, we see an increasing trend for
bridging several IoT networks over the Internet. Conveniently
and consistently managing a federated IoT network is chal-
lenging. In an naı̈ve approach, SSH or VPNs could be used
to remotely control small groups of IoT networks. However,
this requires gateways to be addressable (not behind a firewall
or NAT) and available (not offline, e.g., due to an unreliable
wireless uplink) at configuration time, which is unrealistic for
dynamic environments such as the IoT. Current state-of-the-art
approaches [10]–[12] thus propose to steer control operations
from the cloud. Using the cloud as a central hub to manage
IoT devices of one owner across network borders eliminates
the need for managing each network separately and for setting
up remote management solutions. In this setting, the network
owner sends control messages to the cloud, which will relay
them to all gateways in the owner’s federated IoT network (if
a gateway is offline, it will be updated as soon as it comes
back online). Such control messages can be sent in a variety of
formats and protocols, e.g., using CoAP, SNMP, or NETCONF
[13]. Hence, it is important to develop a system that is agnostic
to the specific format and protocol for control operations.

B. Security Analysis

While the cloud enables the owner of a federated IoT
network to perform control operations efficiently, this comes at
the price of severe security challenges. In cloud-based systems,
the prevalent security assumption is that the cloud provider can
be partially trusted. Specifically, the cloud provider is typically
considered to be semi-honest or honest-but-curious [14]–[17].
That is, it will not disrupt the execution of the protocol and
is hence limited to merely passively gathering information.
Most importantly, a cloud provider, under these assumptions,
will not tamper with messages it is supposed to relay to other
nodes in the network. This is a widespread and reasonable
assumption if the primary goal is to protect the confidentiality
of data. However, as the IoT connects the physical world to the

Internet, security in the cloud-based IoT is not only about the
privacy of information but also required to guarantee (physical)
safety. As a severe example, an adversary could remotely gain
control over a pacemaker to modify a patient’s heart rate [18]
after gaining access to the cloud. Hence, only assuming an
honest-but-curious cloud provider when considering control
operations in the cloud-based IoT does not offer adequate
protection for safety-critical tasks.

We derive severe attacks a dishonest cloud provider (or
rogue employees and entities attacking the cloud) can launch:
Modification Attack: Changing messages before forwarding
them, e.g., to change parameters in a configuration message.
Insertion Attack: Creating new messages and sending them to
devices in the network, e.g., to gain access to a specific device.
This class of attacks also includes duplication of legitimate
messages (replaying) to cause an inconsistent system state.
Reorder Attack: Changing the order of messages before
distributing them in the network, e.g., to change the semantics
of the request contained in the messages.
Withhold Attack: Deciding to (temporarily) not pass on
certain messages to the network, e.g., to block the de-
authorization of access to devices.

All these attacks have in common that they can lead to
severe consequences, e.g., if the cloud provider (or a rogue em-
ployee or someone attacking the cloud provider) uses them to
gain control over an actuator in the physical world. To account
for these types of attacks, we assume a malicious-but-cautious
cloud provider [16] and protect our system accordingly. In this
attacker model, the cloud provider can launch any attack as
long as this leaves no evidence. Notably, this does not imply
that the cloud provider indeed behaves maliciously. Rather,
it acknowledges that the cloud provider (or an employee)
can potentially behave maliciously or be subject to attacks.
Neglecting the resulting attack vectors would enable attackers,
e.g., to gain control over devices in the user’s IoT network
without leaving any evidence. This attacker model is especially
well-suited for our scenario, as cloud providers face serious
consequence if misconduct is detected.

In this work, we do not aim to protect against insider attacks,
e.g., by hacked gateways within the IoT network. Still, we
show that D-CAM provides accountability, i.e., misbehavior
of gateways (through errors or attacks) can be identified.

III. D-CAM DESIGN

The goal of this paper is to overcome the identified se-
vere security challenges by realizing distributed configuration,
authorization, and management (control operations) in the
cloud-based IoT in the presence of a malicious-but-cautious
cloud provider. We present D-CAM, our solution that bases
on the principle of hash chains [19] to create a distributed
administrated log of control messages performing control
operations. This allows us to create a secure timeline [20] of
these messages, which can be verified by any gateway in the
federated IoT network. In the following, we focus on achieving
integrity and availability of control messages. We describe how
to additionally achieve message confidentiality in Section VI.



Fig. 1: D-CAM’s design centers around a message log which allows gateway
group members to append new messages and verify the contained messages.

A. Design Overview

D-CAM operates in a scenario where multiple IoT networks
are interconnected via the cloud to form one larger, virtual
IoT network. As each individual IoT network is connected
to the cloud via a dedicated user-controlled gateway, their
interconnection requires the federation of said gateways, which
we refer to as a user’s gateway group. The task of D-CAM is
the reliable distribution of control operations to all gateways
in a gateway group in the presence of a malicious-but-
cautious cloud provider. We assume that each gateway has
a cryptographic identity, i.e., a public/private key pair, and is
controlled by the user owning the IoT network.

D-CAM relies on distributed managed, cloud-hosted mes-
sage logs for each gateway group, to which all members of the
gateway group can securely append messages as illustrated in
Figure 1. Furthermore, each gateway can verify integrity and
authenticity of the message log. Messages in the message log
immediately reflect control operations. As our focus lies on
realizing the secure distribution of arbitrary control messages
in federated IoT networks, we deliberately abstract from spe-
cific approaches for configuring individual IoT devices (e.g.,
CoAP, SNMP, or NETCONF). Furthermore, control messages
in D-CAM also include the management of the gateway group
itself, i.e., adding and removing gateways (dashed line in
Figure 1). In summary, D-CAM’s message log is maintained
in a distributed manner within gateway groups and the cloud
is reduced to a highly available message store and relay.

B. Appending to the Message Log

The goal of D-CAM is to ensure that only authorized
gateways can append control messages to the message log.
Furthermore, no one should be able to modify, reorder, or
remove messages. To achieve this goal, we protect control
messages with a combination of sequence numbers, a hash
chain, and digital signatures as shown in Figure 2.

We describe the process of appending one message to the
message log and from now on refer to the gateway appending
the message as its initiator. To avoid message collisions,
the initiator reads the sequence number of the most recent
message, increases it by one, and adds it to the new message
(dashed lines in Figure 2). If two gateways simultaneously
append a message, they will use the same sequence number
and hence D-CAM is able to detect and resolve the collision.

Furthermore, the initiator creates a checksum over the mes-
sage itself and the checksum of the directly preceding message
using a cryptographic hash function (solid lines in Figure 2).
Thereby, we create a hash chain [19] that cryptographically

Fig. 2: Each message in the message log is digitally signed by the originating
gateway. All messages in the message log are interlinked via a hash chain.

links all messages in the message log. Due to the pre-
image resistance of cryptographic hash functions, messages
can neither be altered nor reordered without invalidating the
hash chain. The first message in the message log contains a
random initialization vector instead of a previous checksum.

To allow other gateways in the gateway group to verify the
integrity and authenticity of a message, the initiator digitally
signs each message. This signature covers the checksum and
thus also ensures integrity and authenticity of all previous
messages. Subsequently, the initiator sends the message to the
cloud, where it is stored and distributed to all gateways in
the gateway group. Gateways that are offline or temporarily
unavailable will update when they come back online.

Optimization. Creating reasonably secure digital signatures
leads to a non-negligible performance overhead. Hence, with
D-CAM we aim to reduce the amount of required digital
signatures without diminishing the security level. We observe
that in IoT deployments control messages often arrive in
batches, e.g., if the network owner configures new devices or
changes authorization of device access. If a gateway appends
a batch of messages to the message log, it will add a digital
signature only to the last message and send the complete
batch to the cloud. The integrity and authenticity of the other
messages in the batch remains enforced by the hash chain.

C. Management of Gateway Groups

D-CAM uses the message log to secure the management of
gateway groups, i.e., ensure that only authorized gateways par-
ticipate in a gateway group. Thus, D-CAM provides the same
security level for gateway group management as for control
operations. We consider three group management operations:
(i) creation of a gateway group, (ii) adding gateways to a
group, and (iii) removing gateways from a group.

When creating a federated IoT network, the network owner
also creates a new gateway group. To do so, she connects to
one of her gateways and creates the gateway group, as well as a
corresponding message log with a random initialization vector.
To announce the creation of this new group and implicitly
adding itself as the first group member, the gateway creates
an initial message using the initialization vector as identifier.

To add another gateway to her gateway group, the network
owner connects to the new gateway and creates a join request
that is stored in the cloud (outside the message log). Now, she
can connect to any gateway in her gateway group to review and
accept the pending join request, thereby validating the public
key of the joining gateway. To complete adding the gateway
to the gateway group, a group member appends a message to



the message log that grants the public key of the new group
member the right to append messages to the message log. Now,
the new gateway is a full member of the gateway group.

Removing gateways from a gateway group in D-CAM works
similarly to adding gateways. Any member of the gateway
group can append a message to the message log that removes
another gateway from the gateway group by revoking its public
key. Upon receiving this message, the remaining members will
not accept any further messages signed by the removed entity.

Optimization. In certain scenarios, it might not be desirable
to allow each gateway group member to perform control oper-
ations, e.g., if a gateway is deployed in an untrustworthy envi-
ronment or physically exposed. Hence, D-CAM also supports
passive gateways, i.e., gateways that can only be configured
using D-CAM but cannot initiate control operations. Gateways
suspected to be especially vulnerable thus do not jeopardize
the security of the whole network if they are compromised.

IoT devices themselves can also be managed with D-CAM.
Here, D-CAM additionally stores routing information in the
message log, i.e., to which gateway a device is connected.

D. Verifying the Message Log

Whenever a gateway receives a message batch from the
cloud, D-CAM must verify its integrity and authenticity. The
gateway verifies each message sequentially: First, the gateway
verifies the message’s checksum by computing the hash value
over the message and the previous message’s checksum. Then,
the gateway reads the public key of the message’s initiator
from a local cache. The cache is updated whenever a non-
passive gateway is added or removed (cf. Section III-C). This
ensures that only messages by authorized gateway group mem-
bers are accepted by D-CAM. Finally, the gateway verifies the
message’s signature and continues with the next message.

Optimization. In duality to appending messages, processing
time for verifying a message is dominated by checking the dig-
ital signature. Again, our scheme based on hash chains allows
us to selectively employ an optimization. D-CAM can verify
message batches by iteratively checking the checksum of each
message but verifying only the signature of the last message.
With this optimization, we can guarantee the correctness of all
messages in the batch only after verifying the last message.
Hence, the batch size constitutes a trade-off between improved
verification time and required buffer space as well as more
complicated failure recovery. Notably, this does not constitute
a trade-off between security and performance.

E. Trimming the Message Log

The cumulated amount of control messages generated by a
gateway group will steadily increase over time. This becomes
problematic as gateways joining a gateway group after a while
need to process an excessive amount of messages to catch
up with the current network state. At the same time, we
observe that older control messages might be obsoleted by new
messages, e.g., when overwriting a configuration or revoking
an authorization. To leverage this potential for space reduction,
D-CAM allows to trim the message log by eventually starting

a new message log based on the network state at the time of
trimming, thereby pruning all obsoleted messages. This allows
for significantly shorter bootstrapping times for new gateways.

A dedicated gateway group member (e.g., the oldest) con-
stantly monitors the message log’s amount of obsolete mes-
sages. If this amount exceeds a specific threshold (group or
device dependent), the dedicated gateway trims the message
log. To this end, the gateway uploads a complete snapshot of
the current network state to the cloud and adds a snapshot
message to the message log. The snapshot message contains
the snapshot’s storage location and the hash value of the
snapshot. When a new gateway joins a gateway group, it is
provided with the hash over the latest snapshot and thus only
has to verify the message log starting from the latest snapshot.

IV. SECURITY DISCUSSION

We briefly discuss how D-CAM protects against the attacks
we identified (cf. Section II-B) and hence guarantees integrity
and authenticity of control operations in the cloud-based IoT.

Modification Attack. Digital signatures ensure that no
unauthorized entity, e.g., a malicious cloud provider, can mod-
ify a message. Any modification will invalidate the message’s
signature and is easily detectable by any member of a gateway
group, causing a malicious-but-cautious cloud provider to
refrain from launching this attack. Even with our optimization
to not sign each message, we can easily detect mismatches in
the hash chain if non-signed messages are modified.

Insertion and Reorder Attacks. No unauthorized entity
can append new messages to the message log as they are
unable to create valid digital signatures. Replaying, i.e., dupli-
cating legitimate, signed messages, is prevented as this would
imply recurring sequence numbers and checksum mismatches
in the hash chain. The same detection strategy can be used
for preventing reordering attacks, which would result in a
mismatch in sequence numbers and a broken hash chain.

Withhold Attack. In contrast, detecting withholding of
messages requires additional effort. We briefly outline two
approaches: First, the members of a gateway group can use
a side channel (e.g., by directly contacting each other) to
periodically exchange status information, i.e., the sequence
number and checksum of the latest message. Second, and
without a side channel, each gateway can periodically append a
heartbeat message to the message log, indicating that currently
no updates are to be expected. As gateway group members
need to be updated to the latest version to append to the
message log, this will detect missing heartbeat messages,
which indicates either a gateway failure or a withhold attack.
This approach’s overhead can be parameterized by adjusting
the heartbeat frequency. Furthermore, its storage overhead can
be limited by trimming older heartbeats (cf. Section III-E).

Further Security Considerations. When adding gateways
to a gateway group, the cloud provider might withhold or
modify join requests. The network owner will notice such
attacks when reviewing join requests (cf. Section III-C). When
trimming the message log, the snapshot stored in the cloud
cannot be modified as the hash value cryptographically binds



the snapshot to the message log (cf. Section III-E). Although
not specifically designed to protect against insider attacks,
D-CAM provides a tamper-resistant, verifiable log of all
control operations. Hence, we can detect misbehavior (e.g.,
device defects or attacks) and blame the originating gateway.

To conclude, D-CAM’s approach of a cryptographically
protected message log offers protection against the identified
attacks, even in the presence of a powerful attacker. Attack
attempts are detected by D-CAM which prevents, e.g., physical
harm. Furthermore, network owners can launch appropriate
countermeasures and collect evidence of attacks.

V. EVALUATION

To prove the feasibility of D-CAM and quantify its perfor-
mance, we evaluate its processing, storage, and communication
overheads. Based on these results, we compare D-CAM to
other remote management approaches such as VPNs or SSH.
As a basis for our evaluation, we implemented a prototype
for the gateway component in the C programming language.
We rely on OpenSSL 1.0.1k for the cryptographic opera-
tions, libjansson 2.7 for serializing messages using JSON, and
MySQL 5.5 for persistently storing state at the gateways, e.g.,
the list of gateways in the gateway group. As an exemplary
embedded device for the gateway, we chose the Raspberry
Pi Model B+ with a 700 MHz ARM11 processor, 512 MB of
RAM, and Raspbian Jessie Lite Linux as operating system.
To properly select the employed cryptographic primitives, we
followed the recommendations of NIST [21]. More precisely,
we use SHA-256 as hash function as well as two different
digital signature schemes (to enable their comparison): RSA
with 2048 Bit keys and ECDSA with NIST curve P-256.

A. Processing Overhead

First, we evaluate the processing overhead for appending
messages to and verifying messages in the message log. We
refer to a signing interval of k if a gateway signs on average
each k-th message (cf. Section III-B). Analogously, a verifi-
cation interval of k means that a gateway on average checks
the digital signature of each k-th message (cf. Section III-D).
For each result, we performed 30 runs, each consisting of the
processing, i.e., appending or verifying, of 10 000 messages.
We show the mean processing time for one message with 99%
confidence intervals. We distinguish between the time required
for creating respectively verifying the hash chain and the
digital signature, including parsing and serializing messages,
the lookup of public keys, and all other calculations.

Appending to the Message Log. The processing time for
a gateway to append one message to the message log is
influenced by the signing interval and the message length.

First, we vary the signing interval between 1 and 25 and
fix the message length to 2 500 Byte, which allows to encode
even larger control messages. Our results in Figure 3 (note
the logarithmic scale in this plot) show that the processing
time for creating the hash chain does not depend on the
signing interval while the time for creating the digital signa-
tures significantly decreases for an increasing signing interval.

Fig. 3: Mean duration for appending a message of length 2 500 Byte to the
message log, depending on varying signing intervals. Increasing the signing
interval reduces the average time spend in the predominant signing operation.

Fig. 4: Mean duration for appending a message of varying payload size to
the message log with a signing interval of 20 and a group size of 1. The time
for appending one message increases linearly with the payload size.

Fig. 5: Mean duration for verifying one message of size 2 500 Byte in the
message log, depending on the verification interval. By increasing this interval
the average time spent for the predominant verification operation is reduced.

Especially for smaller signing intervals, we see that ECDSA
strongly outperforms RSA as expected due to their different
performance asymmetries [4]. For a signing interval of 20,
using RSA (ECDSA) allows to append 202 messages/s (1 052
messages/s). Furthermore, we observe only little additional
savings for increasing the signing interval beyond 20, espe-
cially when using ECDSA as signature scheme.

Hence, we now fix the signing interval to 20 and vary
the message length between 500 and 10 000 Byte in steps
of 500 Byte. In Figure 4, we observe that processing time
increases roughly linearly for increasing message sizes. This is
mainly due to an increased time for creating the checksum for
longer messages. Again, we observe a superior performance
of ECDSA compared to RSA. For a message size of 500 Byte,
we can process 228 messages/s (2 004 messages/s) with RSA
(ECDSA). This decreases to 154 messages/s (388 messages/s)
with RSA (ECDSA) for a message size of 10 000 Byte.

Verifying the Message Log. The processing time for
verifying a message depends on the verification interval and
the message size. Additionally, processing time might be
influenced by the number of gateways that created messages.

To study the influence of the verification interval on process-
ing time, we vary the verification interval between 1 and 25.
Message size is fixed to 2 500 Byte and the gateway group size
to 1. As shown in Figure 5, the time for verifying hash chains



does not depend on the verification interval while the time
for verifying digital signatures decreases with an increased
verification interval. Here, RSA benefits from the performance
asymmetry and outperforms ECDSA. For a verification inter-
val of 20, RSA enables us to verify 991 messages/s compared
to only 611 messages/s for ECDSA. Increasing the verification
interval beyond 20 offers little performance gains.

Hence, we now set the verification interval to 20 while
keeping the group size at 1 and evaluate the impact of varying
the message size between 500 and 10 000 Byte in steps of
500 Byte and depict the results in Figure 6. The time for
verifying one message increases approximately linearly with
an increasing message size. This stems from an increase in
verifying the hash chain checksums and validating the digital
signature. We again notice a superior performance of RSA
over ECDSA. Using RSA (ECDSA) allows us to verify 1 840
messages/s (888 messages/s) for messages of size 500 Byte.
For a message size of 10 000 Byte, these numbers decrease to
387 messages/s (315 messages/s) for RSA (ECDSA).

Next, we analyze the impact of the number of gateways
in the gateway group. We fix the verification interval to 20,
message size to 2 500 Byte, and increase gateway group size
from 1 to 100. Gateways will append messages one by one,
i.e., the first gateway will append its second message only after
all other gateways have appended a message. Our results in
Figure 7 show that the verification time does not depend on
the number of gateways in the gateway group.

Remarks. Setting both signing and verification interval to
20 constitutes a reasonable trade-off between processing time
and required buffer space for verification. Furthermore, if the
goal is to optimize performance of appending messages in
D-CAM, ECDSA is preferable over RSA. However, RSA
shows a superior performance for verifying messages. For a
gateway group of size n, a message has to be verified by
n gateways while it is appended only once. Thus, especially
for large gateway groups, selecting RSA is recommended.
Notably, the size of the gateway group does not influence the
time required for verifying messages. This is expected as long
as we can keep the public keys of all gateway group members
in memory. Even on a resource-constrained Raspberry Pi, we
can cache the public keys of hundreds of gateways.

B. Storage and Communication Overhead

To analyze the per-message storage overhead as well as the
influence of trimming the message log on communication, we
rely on analytical and simulative methods.

Per-Message Overhead. The per-message overhead of
D-CAM stems from header fields (e.g., sequence number and
initiator identifier), the checksum required for the hash chain,
and the digital signature. More precisely, the overhead consists
of 36 Byte for the header, 32 Byte for the checksum, plus
258 Byte (72 Byte) for encoding the RSA (ECDSA) digital
signature. As the size of the header, hash, and signature stay
constant for varying payload sizes, this overhead decreases
from 65.2% (28%) for messages of size 500 Byte to 3.26%
(1.4%) for messages of size 10 000 Byte for RSA (ECDSA).

Fig. 6: Mean duration for verifying a message of varying payload size with
verification interval 20 and a group size of 1. Due to checking the hash chain,
the time required for message verification scales linearly with the payload size.

Fig. 7: Mean duration for verifying one message of length 2 500 Byte in the
message log, depending on the number of gateways in the gateway group.
The group size has a negligible impact on the entire verification duration.

Fig. 8: The influence of trimming the message log depends on the probability
of messages being obsoleted (p = 0, 0.2, ..., 1). D-CAM at most incurs a
fixed overhead (the specific amount is a configurable parameter).

Influence of Trimming the Message Log. The behavior
of D-CAM’s trimming approach depends on the amount of
obsolete messages in the message log. We study this behavior
with a simulative approach where we consider message logs
of up to 100 000 messages and let D-CAM trim the message
log whenever it observes at least 5 000 obsolete messages. We
iteratively append messages, where each inserted message may
obsolete a previous one with a probability of 0, 0.2, ..., 1. In
Figure 8, we compare the number of messages a new gateway
has to process to the optimal number, i.e., only non-obsoleted
messages. Each experiment was conducted 1 000 times with
random seeds and we depict the mean amount of messages to
be verified. We omit confidence intervals to ease readability,
as the 0.99 confidence intervals are < 204 messages for all
values. Indeed, our results show that D-CAM at most incurs
a fixed overhead of 5 000 messages (the specific amount is
one of D-CAM’s parameters). Furthermore, the number of
trimming operations required (indicated by drops) scales with
the probability of obsolete messages, ranging from 20 when
all messages are obsoleted to 0 if none become obsolete.

Remarks. Our evaluation of D-CAM’s storage and commu-
nication overhead leads to two observations. First, if reducing
storage space is important, using ECDSA as signature scheme
is the better choice. Notably, the required storage space can
further be reduced by increasing the signing interval (cf. Sec-



tion III-B). Second, when considering the amount of messages
that need to be processed by a new gateway joining a gateway
group, D-CAM incurs only a constant overhead compared to
an optimal solution that directly deletes any obsolete messages.

C. Comparison to Other Remote Management Approaches

Although D-CAM provides more functionality, e.g., group
management and an audit log, than established remote man-
agement approaches such as VPNs or SSH, it is still interesting
how D-CAM performs compared to said approaches. As our
goal is to achieve a consistent configuration of the whole
federated IoT network, VPNs and SSH require one connection
from each gateway to each other gateway to communicate
all control operations. In a network of N gateways, this
results in sending N messages for each control operation and
adding as well as maintaining N new connections for each
new gateway. Considering bandwidth constraints of gateways,
e.g., mobile uplinks, this becomes infeasible already for small
networks. Contrarily, D-CAM only sends one message per
control operation from a gateway to the cloud, irrespective of
the network size. Thus, D-CAM’s scalability is not bound by
bandwidth. Furthermore, D-CAM’s design reduces setup and
management costs and is less susceptible to misconfiguration.

To quantitatively compare D-CAM to VPNs and SSH, we
performed measurements using our evaluation setup. We use
OpenVPN 2.3.4 as well as OpenSSH 6.7 with RSA 2 048 Bit
keys and AES-256 in CBC mode (providing the same security
level as D-CAM). The transmission of a message of size 2 500
Byte over OpenVPN (OpenSSH) results in 2 925×N Byte
(2 766×N Byte) application layer payload (for group size N ),
compared to 2 826 Byte in D-CAM (irrespective of group
size). Hence, already for networks of 3 gateways, D-CAM
significantly reduces the communication overhead compared
to utilizing VPNs or SSH. We observe similar trends for
processing time (signing/verification interval of 20).

D. Concluding Observations

We specifically designed D-CAM to scale to large network
sizes. Our evaluation results confirm that the processing time
for appending to the message log and verifying it are not no-
ticeably impacted by the size of the gateway group. Similarly,
the storage and communication overhead of D-CAM does not
depend on the group size. D-CAM scales linearly in the size of
the message log, being bound only by available storage space.
Our message log trimming approach further helps in reducing
required storage space. Additionally, D-CAM has no trade-
off between security and performance. We provide the same
level of security as digital signatures and additionally protect
against modification, insertion, reordering, and withholding
of messages. Increasing D-CAM’s signing and verification
intervals allows to reduce the processing overhead. The trade-
off here is that messages must be buffered at a receiving
gateway before they can be verified. To conclude, D-CAM
provides a high level of security against powerful adversaries
such as a malicious-but-cautious cloud provider at reasonable
costs with respect to processing and storage overhead.

VI. CONFIDENTIALITY

Certain scenarios also require the confidentiality of control
messages, e.g., configurations of IoT devices may be industry
secrets. In D-CAM, we thus can encrypt all control messages
to only allow authorized gateways to read their content. We
efficiently encrypt messages using a symmetric group key (e.g.,
using AES-256) shared within a gateway group. However,
the possibility to arbitrarily add or remove gateways renders
the key distribution challenging as we demand that gateways
are only able to read messages from the message log that
were appended during their membership. Hence, we change
and redistribute the group key whenever group membership
changes. For exchanging the group key, we rely on the public
keys of gateways. Each time a gateway appends a message to
add or remove another gateway, it also changes the group key.
The group key is then encrypted for each gateway that will be
a member after the addition or removal using its public key
and then appended to the message log. Thus, only current
group members can decrypt the new group key and thus
any following messages. An in-depth analysis of the incurred
processing overheads [4] shows that overheads are reasonable
and well worth the additional protection of confidentiality.

VII. RELATED WORK

Several approaches to control access to data in the cloud-
based IoT have been proposed. In the context of health data,
Lounis et al. [5] leverage attribute-based encryption to perform
access control. Similar approaches have been proposed by
Thilakanathan et al. [22] based on a secure data sharing
protocol and Liu et al. [23] by employing attribute-based
signcryption. On a more general scale, SensorCloud [4], [24]
provides a generic security architecture for outsourcing IoT
data to the cloud. In all of these approaches, access control
is solely performed to protect the confidentiality of data
and does not consider the potentially safety-critical access to
actuation capabilities. This problem is addressed by Picazo-
Sanchez et al. [6], who realize fine-grained access control for
commands sent to an IoT device. However, their ciphertext-
policy attribute-based encryption scheme induces processing
overheads in the order of seconds compared to D-CAM’s
overhead in the order of milliseconds. Furthermore and in
contrast to our work, all previous approaches do not consider
secure federation of IoT networks. They either require a central
trusted entity for access control [5], [22], [23] or operate solely
within isolated networks [4], [6], [24]. In contrast, D-CAM
realizes full configuration, authorization, and management in
the cloud-based IoT. Porambage et al. [25] realize secure
multicast in the IoT. They, however, do not consider many-
to-many messages and the management of gateway groups.

Secure audit logs protect integrity and authenticity of log
files [26]. Schneier and Kelsey [26] present a generic secure
logging scheme that allows to detect deletion or modification
attempts even on compromised hosts. Waters et al. [27] pro-
pose an encrypted and searchable audit log that also protects
confidentiality. Although these approaches do not consider a
distributed setting, i.e., multiple entities contributing to a log,



they provide us with valuable input. Especially searchable en-
cryption would allow to decrypt only relevant messages in the
message log. Considering a distributed setting, Accorsi [28]
proposes to apply trusted computing to ensure authenticity and
confidentiality of log entries. In contrast, we do not require an
additional entity that can become a single point of failure.

Finally, our approach is inspired by well-established
blockchain approaches. Bitcoin [29] uses a blockchain to store
monetary transactions. It has been extended to implement
decentralized lookup stores [30] and access control [31]. In
contrast to these approaches, D-CAM’s inherently strong trust
within gateway groups eliminates the need for costly con-
sensus protocols, e.g., block mining in Bitcoin. Performance
improvements proposed for Bitcoin, such as block pruning or
leader election [32], are similar to the storage optimizations
of D-CAM. However, block pruning still requires to verify
the whole blockchain when joining the system while D-CAM
requires to only verify messages since the last trimming.

VIII. CONCLUSION

In this paper, we present D-CAM to realize distributed
configuration, authorization, and management in the cloud-
based IoT across borders of IoT networks. D-CAM runs on
the gateways in a federated IoT network and allows users to
control their complete federated IoT network from each of
their gateways without having to care about the reachability
and availability of individual devices. D-CAM utilizes the
concepts of hash chains and digital signatures to create a
secure and distributed administrated log of control messages
stored in the cloud, thereby restricting the cloud to act as a
highly available and scalable proxy for relaying and storing se-
cured control messages. This allows us to ensure the integrity,
authenticity, and confidentiality of control messages, even in
the presence of a powerful attacker such as a malicious-
but-cautious cloud provider. D-CAM’s tamper-resistant log
of all control operations additionally allows to detect and
pinpoint internal attackers. Thus, and in contrast to related
work, D-CAM is especially well-suited for controlling access
to actuating capabilities of safety-critical devices.

As our evaluation shows, D-CAM’s high level of security
comes at modest costs. Even on a resource-constrained gate-
way, D-CAM is able to process more than 640 messages per
second for a reasonable choice of system parameters. Notably,
D-CAM’s processing overhead depends only on the number of
messages to be processed and does not increase with the size
of the gateway group. Furthermore, D-CAM’s message log
trimming scheme results in at most a fixed storage overhead
compared to a system managing configuration, authorization,
and management centrally in the cloud. D-CAM does not only
show comparable performance to other remote management
approaches (e.g., VPNs and SSH) for small networks but
significantly scales better for larger networks. In conclusion,
D-CAM allows to securely realize distributed configuration,
authorization, and management in cloud-interconnected IoT
networks even in the presence of powerful attackers at modest
costs in terms of processing and storage overhead.
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