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Abstract—An increasing number of IoT scenarios involve
mobile, resource-constrained IoT devices that rely on untrusted
networks for Internet connectivity. In such environments, at-
tackers can derive sensitive private information of IoT device
owners, e.g., daily routines or secret supply chain procedures,
when sniffing on IoT communication and linking IoT devices
and owner. Furthermore, untrusted networks do not provide IoT
devices with any protection against attacks from the Internet.

Anonymous communication using onion routing provides a
well-proven mechanism to keep the relationship between commu-
nication partners secret and (optionally) protect against network
attacks. However, the application of onion routing is challenged
by protocol incompatibilities and demanding cryptographic pro-
cessing on constrained IoT devices, rendering its use infeasible.

To close this gap, we tailor onion routing to the IoT by bridging
protocol incompatibilities and offloading expensive cryptographic
processing to a router or web server of the IoT device owner.
Thus, we realize resource-conserving access control and end-to-
end security for IoT devices. To prove applicability, we deploy
onion routing for the IoT within the well-established Tor network
enabling IoT devices to leverage its resources to achieve the same
grade of anonymity as readily available to traditional devices.

I. INTRODUCTION
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In trusted environments, e.g., smart homes, the establish-
ment of security for IoT devices is well understood. However,
the emergence of other private and industrial mobile use
cases, such as pet monitoring [1], [2] or container and parcel
tracking [3]–[5], involve IoT devices that operate in untrusted
networks, e.g., using public Wi-Fi or ad-hoc networks for
Internet access. Inevitably, new risks come up in these environ-
ments. First, the relationship between communicating parties
reveals private or secret routines [6] and, combined with
location data, eases theft of valuable goods [5]. Second, IoT
devices in untrusted networks lack either a globally routable IP
address [7] or traditional defense mechanisms such as firewalls
and intrusion detection systems [8].

Current networking paradigms offer two alternatives to
tackle these problems: Cloud computing, which is often used
to access statistics and functionality of IoT devices via smart-
phone apps [9], introduces a point of indirection which hides
the relation of devices that exchange information, establishing
a mutually reachable point of contact. However, severe con-
cerns challenge the trust in cloud providers due to their ever-
increasing data gathering in all areas of life [10], incidents
of data theft and misuse [11], and a general lack of control

on data handling by the cloud [12]–[14]. Thus, to omit this
single point of trust, we desire a direct communication with or
between IoT devices [15]. In such a setting, anonymous com-
munication using onion routing likewise promises to prevent
a linkage of communication partners [16]–[19] and to ensure
reachability coupled with access control [16], [20].

However, resource constraints of IoT devices challenge the
use of traditional anonymous communication systems. Specifi-
cally, limited processing capabilities of IoT devices impede the
execution of heavyweight cryptographic public key operations
[21]–[24] used for connection establishment. The problem of
involved processing exacerbates for mobile IoT devices as it
depletes limited energy resources [25]. Furthermore, resource
constraints and operation in lossy wireless networks force IoT
devices to implement special protocols [22]–[24] which are
incompatible to traditional anonymous communication, which
depends on a reliable transport and is thus incapable of dealing
with the frequent packet loss and reordering in the IoT.

In this paper, we close the gap that hinders the application
of anonymous communication in the IoT domain. To this end,
we tailor onion routing to the IoT using a delegation paradigm.
More specifically, our contributions are as follows:

• We demonstrate the computational infeasibility of estab-
lishing onion routing on IoT devices, highlight protocol
incompatibilities between anonymous communication and
the IoT domain, and emphasize the need for proper access
control to limit the attack surface.

• We realize onion routing for the IoT by delegating pro-
cessing intensive tasks during connection setup to trusted
entities. Our mechanism can leverage the benefits of exist-
ing, widely deployed onion routing networks such as Tor
without requiring changes to the vast majority of existing
onion routers and our implementation is public [26], [27].

• We thoroughly analyze the performance and applicability
of our approach. Our delegation method results in only a
modest 1.7 s latency increase for connection establishment
and realizes proper access control with 1 s latency overhead.
We achieve these reasonable circuit setup times as delega-
tion strikingly decreases the local processing at IoT devices
from several seconds or minutes to well-manageable 53 to
146 ms. Our approach leads to a negligible overhead for
only a small number of nodes in an existing onion network.



II. IOT SCENARIOS AND ATTACKER MODEL

An increasing number of scenarios relies on the IoT to
deliver core functionality. In the following, we discuss the
resulting communication models and use cases for Internet-
connected IoT devices and define our attacker model as a
foundation to provide security in these scenarios.

A. IoT Scenarios & Communication Models

We distinguish two primary communication models in the
IoT. Interactive communication with end-user devices, e.g.,
smartphones, (cf. Figure 1a) realizes direct data access and
remote control. Complementary, communication between IoT
devices (cf. Figure 1b) enables automated workflows. An
increasing number of scenarios depend on mobile IoT devices
that rely on (public) wireless access points or cellular uplinks:

Supply chain, container, parcel, and delivery robot track-
ing [3]–[5] enable shipper and consignee to track the current
location of freight. IoT devices also can report environmental
conditions [28] of perishable or fragile cargo, e.g., to trigger
temperature and humidity changes by other IoT devices or to
enable evaluation of transport conditions by the consignee.

Pet or wildlife monitoring [1], [2] enables pet owners
and rangers to interactively track movement, life signs, and
even live footage or videos of animals. Other IoT devices
automatically unlock smart doors, control food dispensers, or
inform rangers of poaching to protect endangered species.

Similarly, smart home devices on travel, e.g., alarm systems
for hotel rooms, as well as smart travel equipment, such as
smart bags, enhance user experience on travel (in untrustwor-
thy networks) with functionality similar to traditional smart
home applications and tracking of luggage.

B. Attacker Model for IoT Scenarios

To keep cloud providers oblivious of information derived
from IoT usage (Section I), we consider it inevitable that IoT
devices communicate directly with each other (cf. Figure 1).
However, direct communication still risks security and privacy
of users as attackers can link communication partners [29]
which enables surveillance and tracking, e.g., an attacker
can link goods in supply chains or pets with the respective
communication partner and owner. This data can reveal private
daily routines, secret business processes, and, combined with
location information, ease theft of valuable goods [5].

Furthermore, direct communication introduces an attack
surface as IoT devices provide a globally reachable server [30],
[31]. Thereby, IoT devices expose potentially vulnerable im-
plementations to the Internet. Especially in mobile scenarios,
they typically access the Internet via untrusted networks,
which lack reliable in-network security mechanisms, e.g.,
firewalls and intrusion detection systems [32]. In particular,
IoT devices use cellular networks of (foreign) providers [3],
leverage free Wi-Fi hotspots, or establish ad-hoc networks,
e.g., using infrastructure-based IoT networks for parking or
traffic management systems. Consequently, IoT devices can
be contacted by anyone such that attackers can exploit vulner-
abilities for DoS or takeover. Furthermore, on-path attackers
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Fig. 1. The two different IoT communication models have to support mobile
communication over untrusted networks.

can sniff on data packets to retrieve sensitive data, and link the
end-points of communication to gain private meta information.

Its inherent property of protecting data transmission and
achieving unlinkability of communication partners [33] makes
anonymous communication a promising solution to protect IoT
devices and their owners from such attacks.

III. ANONYMOUS COMMUNICATION

Anonymous communication unlinks communication part-
ners and protects data transmission in high-latency (without
real-time constraints, e.g., email [34]) and low-latency (real-
time communication, e.g., web browsing or instant messaging)
settings. Since connections to IoT devices are often interactive,
we focus on low-latency communication. The achievable level
of anonymity depends on the number of participants, motivat-
ing the use of already well-deployed anonymization networks.

a) Establishing Anonymous Connections: A common
approach to achieve sender anonymity is called onion rout-
ing [16], [17]. It utilizes distributed trust across multiple nodes
by sending packets on a detour over several hops, called onion
relays (ORs). At each of these hops, one layer of encryption is
added or removed, altering each packet. The client establishes
a virtual tunnel, called circuit, to the destination over typically
three ORs: guard, middle, and exit. To this end, the sender
negotiates a separate symmetric key with each OR to encrypt
the application data in multiple layers. Tor [16], [35] is the
de-facto standard of such an approach.

In a Tor circuit, each OR only knows (i) which peer has sent
it data and (ii) to which peer it is relaying data. Here, a circuit
length of three constitutes a reasonable trade-off between
security and performance, where the middle OR hinders the
exit to get to know the guard (first OR) and vice versa [16].

b) Hiding Service Locations: Onion services (OSes) ad-
ditionally provide receiver anonymity, thus protecting against
(distributed) denial-of-service (DoS) and physical attacks [36].
As a side effect, OSes can operate even if the server does not
own a public IP address or is located behind a firewall. These
properties are attractive for IoT devices (cf. Section II-B).

To offer an onion service, a server selects three ORs, called
introduction points (InPs), and builds a separate circuit to each
of them. Next, the server generates an OS descriptor [20] and
publishes it anonymously to OS directory servers (OSDir) to
announce the presence of the service and how to connect to
it. To access an OS in Tor, the client uses the matching onion
address to fetch the OS descriptor and thus the respective
InPs from an OSDir. Then, the client creates a circuit to
a randomly selected OR, called rendezvous point (RP), and
sends an arbitrary nonce, called rendezvous cookie, to that
OR. Following, the client builds a new circuit to one of the



InPs to inform the OS about the selected RP and cookie. If the
OS accepts the client’s request, it establishes a new circuit to
the selected RP and sends the cookie. The RP recognizes the
cookie and, finally, starts to relay encrypted packets between
client and onion service. The server can also be configured to
only grant access to authorized clients [20].

IV. CHALLENGES FOR ONION ROUTING IN THE IOT

To enable secure and privacy-preserving communication
in the IoT, we propose to interconnect IoT devices using
onion routing. However, realizing onion routing for the IoT
is challenging due to infeasible computational overheads and
protocol incompatibilities. In the following, we detail these
challenges and distill resulting requirements.

a) Infeasible Public Key Overhead: The setup of en-
cryption layer keys (cf. Section III) requires public key
cryptography which significantly burdens resource-constrained
IoT devices w.r.t. processing resources, channel establishment
times, and energy resources [22]. Already a single Curve25519
Diffie-Hellman key agreement on a Zolertia Z1 (MSP430 16-
bit CPU@16 MHz) takes 117 s. A Tor circuit establishment
requires multiple such key agreements which sum up to 11 min
of public key processing (even 32 min to connect to an onion
service). Even a comparably powerful OpenMote B (ARM
Cortex-M3@32 MHz) requires 2.8 s or 7.7 s (cf. Figure 5b).

The resulting high connection setup times render the use
of onion routing infeasible for most use cases and the large
amount of computations and involved communication depletes
limited energy resources of mobile IoT devices. Thus, we
strive for a solution that relieves IoT devices from public key
computations by offloading them to more powerful devices.

b) Incompatible Protocols & Deployability: IoT devices
employ network and security protocols that better account for
their resource constraints as protocols typically used on the
Internet. While TCP is prevalent in the Internet, IoT devices
use UDP to avoid bookkeeping and ROM overheads [37]. As
Transport Layer Security (TLS) does not operate on the unreli-
able transport provided by UDP, IoT devices rely on Datagram
TLS (DTLS). This selection leads to incompatibilities when
striving to connect IoT devices to existing onion networks,
e.g., Tor requires clients to connect using TLS on top of TCP.
Thus, to allow connections from IoT devices, onion relays
must support IoT protocols. However, onion routing networks
are slow in adapting proposed changes [38]. Thus, a need for
gradual deployment of IoT support in onion routing networks
exists, i.e., allowing IoT devices to profit from onion routing
benefits even if only a few ORs adopted the required changes.

A different challenge for IoT onion routing results from
unreliable wireless links. IoT networks involve a high risk of
loss or reordering of cells which is neither addressed by the
unreliable UDP transport nor handled by deployed onion rout-
ing systems, such as Tor, which assume the use of a reliable
transport protocol. Thus, the use of onion routing in the IoT
domain requires us to bring together the lightweight, unreliable
communication protocols of IoT domains with the guarantees
expected by widely deployed onion routing networks.

c) Resulting Requirements: From these challenges and
our scenarios and attacker model (cf. Section II), we distill
requirements for security and privacy in untrusted IoT environ-
ments. Besides providing encrypted communication to prevent
sniffing by on-path attackers, e.g., untrusted network providers
used by mobile IoT devices for Internet access, a main re-
quirement is to prevent attackers from linking communication
partners. Realizing this requirement without requiring trust in
cloud providers is important, i.e., independent of a trusted third
party that the IoT device owner cannot control. We address
these requirements by tailoring onion routing to the IoT.

Doing so, we have to consider that IoT devices must provide
access also if (i) the network only provides an unroutable net-
work address or blocks inbound connections, or (ii) a mobile
IoT device repeatedly changes its network address. As IoT
devices in untrusted networks are not (necessarily) protected
by firewalls or intrusion detection systems (cf. Section II-B),
an IoT device should expose only a minimal set of functionality
to unauthorized communication partners to prevent takeovers
and limit the potential of DoS attacks. Furthermore, as such
IoT devices can in principle be contacted by anyone, they must
enforce access control to only grant legitimate peers access to
their functionality. Mechanisms that tackle these requirements
further have to consider resource constraints of IoT devices.

Our approach enables resource-constrained (mobile) de-
vices, as prevalent in the IoT, to use anonymous communi-
cation while ensuring proper encryption, access control, and
restriction of functionality if exposed to potential attackers.

V. TAILORING ONION ROUTING TO THE IOT

The core idea of our approach to tailor onion routing to the
IoT is to assist resource-constrained IoT devices by deploying
dedicated support functionality at the edge of legacy onion
routing networks as shown in Figure 2: IoT entry nodes (1)
provide dedicated entrance points into the anonymization net-
work that specifically care for the unique requirements of IoT
devices. To this end, IoT entry nodes translate between net-
work and security protocols used in traditional onion routing
and protocols specifically designed for resource-constrained
IoT devices, make IoT devices globally reachable, and enforce
universal access control. IoT devices (2) execute local access
control and enforce end-to-end security. (1) and (2) already
enable a powerful client (3a), that is permitted to learn the
IoT device’s network location, to anonymously communicate
with the IoT device. Offloading to a delegation server (3b),
e.g., operated at the IoT device owner’s home router, further
assists IoT devices in establishing anonymous communication
themselves, especially by unburdening them from computa-
tionally expensive cryptographic operations. Furthermore, it
allows IoT devices to hide their location from only partially
trusted clients by operating as IoT-enabled onion services.

In the following, we first explain the functions of IoT
entry nodes and IoT devices, allowing powerful clients to
anonymously communicate with IoT devices, before we extend
our design with offloading to allow constrained devices to
establish circuits and act as location-hidden onion service.



A. IoT Entry: Connecting the IoT to Onion Routing Networks
To support resource-constrained IoT devices in using onion

routing, we introduce the functionality of an IoT entry. More
specifically, we elevate a subset of (long-running) guards in a
traditional onion routing network to (i) support IoT protocols
to translate between onion routing and IoT communication
protocols and (ii) let them serve as stable point for establishing
connections with IoT devices. Furthermore, we (iii) realize
a resource-conserving in-network access control at the IoT
entry. In the following, we discuss how we can achieve this
functionality for already deployed onion routing networks,
allowing IoT devices to benefit from their performance and
anonymity. The majority of ORs are not extended with IoT
functionality and remain unchanged (cf. Figure 2). For Internet
connectivity (required to connect to the IoT entry), IoT devices
continue to use gateways at the IoT network edge [39]–[42].

1) Bootstrapping, Connections & Access Control: To make
the IoT entry act as a globally reachable point of contact
and provide in-network access control for connections to IoT
devices, we leverage a cookie (shared secret between IoT
device and client). We use this cookie similar to traditional
onion routing which employs cookies to interconnect clients
and onion services (cf. Section III). In particular, client and
IoT device connect to the same IoT entry and present the same
cookie to allow the IoT entry to interconnect them.

a) Bootstrapping Cookie and IoT Entry Selection: Client
and IoT device have to select the same cookie and IoT entry
(cf. Figure 2). To this end, we perform an out-of-band ex-
change of a master secret and a list of IoT entries (guard nodes
with IoT support) during a one-time bootstrapping phase.
Based on the master secret, client and IoT device derive keys
for the selection of IoT entries (kselect) and cookies (kcookie).

To independently select the same IoT entry, client and IoT
device use kselect to compute a keyed hash. They then use the
result as index for the preshared list with IoT entries to agree
on one. As input for the keyed hash, we use the current quarter
and year (e.g., “Q2-2019”) to implement the traditional onion
routing strategy that keeps a once selected guard for a long
time to decrease the risk of selecting a malicious guard [43].
To not disrupt connectivity if an IoT entry fails, IoT devices
should connect to multiple IoT entries in parallel or fall back
on another in the list (e.g., using inputs such as “Q2-2019-1”).

The problem of selecting the same IoT entry is conceptually
similar to obtaining knowledge of introduction points of a
(traditional) onion service (cf. Section III). However, onion
services use a circuit to anonymously publish their introduc-
tion points in the onion service directory. This approach would
require a constrained IoT device to establish a circuit itself,
which is computationally challenging (cf. Section IV).

To independently create the same cookie, IoT device and
client use kcookie to calculate a keyed hash function on the
IoT entry’s IP address. We bind the cookie to the IoT entry to
prevent the use of a purloined or leaked cookie at a different
IoT entry, e.g., to launch an impersonation or DoS attack.

b) Interconnecting Clients and IoT Devices: To use an
IoT entry as stable point of contact for an IoT device, we let
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the IoT device establish a DTLS connection to the IoT entry
and send a cookie (Figure 3a (0)). A client that wishes to
connect to the IoT device establishes a circuit to the IoT entry
(Figure 3a (1)) and requests an extension of this connection
to the registered IoT device. To this end, we introduce an IoT
connect cell which is sent from the client to the IoT entry and
contains the same cookie as used by the IoT device (Figure 3a
(2)). The IoT entry uses the cookie to determine the target IoT
device. It then forwards the IoT connect cell to provide the IoT
device with the contained HMAC for (local) access control
and secrets for end-to-end security (details in Section V-B).
Subsequently, the IoT device notifies the acceptance of the
circuit to the IoT entry which passes this information on
to the client and relays following onion cells between both
connections, like a traditional OR.

c) Using Cookies for In-Network Access Control: To
ensure that only authorized entities establish circuits to IoT de-
vices, we keep cookies secret and let IoT entries only forward
IoT connect cells with a valid cookie. Specifically, we send
cookies only over encrypted and authenticated connections to
the IoT entry, i.e., DTLS or onion routing connections (cf.
Figure 3a (0) and (2)). Thus, only client, IoT device, and IoT
entry know the cookie required to connect to the IoT device.

This access control does not put additional burden on the
IoT entry as we show in Section VI-A1. Nevertheless, the
cookie mechanism provides only a first layer of defense. A
malicious or malfunctioning IoT entry may still enable adver-
saries to connect to the IoT device. Hence, we complement it
with local access control at the IoT device (cf. Section V-B1).

2) Accounting for Protocol Incompatibilities: To allow
resource-constrained IoT devices to use existing onion routing
networks, the IoT entry translates between IoT and Internet
protocols. We achieve this by equipping the IoT entry with
UDP and DTLS support. Furthermore, our cell acknowledg-
ment and retransmission scheme allows IoT entry and IoT
device to exchange onion cells over unreliable IoT protocols
and (partly wireless) connections. As ORs use implicit coun-
ters per circuit to de-/encrypt layers of onion cells, cell loss
or reordering leads to wrong counters. As traditional ORs can
neither detect nor repair wrong counters, circuits break if cells
get reordered or lost [44]. To address this problem, we extend
cells between the IoT entry and IoT device with cell numbers
to afford reordering and acknowledgment of cells.



Client
(powerful)

Circuit extend 
DTLS connection

IoT connect cell

IoT handover cell
IoT entry relaying IoT entry OR
Final circuit

cookie e2e secret

0
1

2

(a) Connection Setup & Access Control

Initiator

Delegation
Server

23

1

cookie

e2e secret

OR keys

Receiver

(b) Delegated Circuit Establishment

Rendezvous
Point

Delegation
Server

Client
(powerful)

OSDir
1
2

3

4

5 6

IoT onion
service

InP

(c) Location-Hiding IoT Onion Service

Fig. 3. For IoT onion routing, we introduce a cookie based connection and in-network access control mechanism (a) which already enables powerful clients
to establish circuits to constrained IoT devices. Offloading the circuit setup to a delegation server allows IoT devices to initiate circuits themselves (b), and
to efficiently operate as location-hiding IoT onion service (c).

B. IoT Device: Lightweight E2E Security and Access Control

We design the IoT device to use lightweight security mecha-
nisms for those tasks that it can offload neither to the untrusted
IoT entry (cf. Section V-A) nor to trusted communication
partners or delegation servers (detailed in Section V-C). In
particular, we (i) implement local access control to protect
against attackers that can bypass in-network access control at
IoT entries. Furthermore, we (ii) enforce end-to-end security
to prevent on-path entities to read or modify transmitted data.

1) Local Access Control: We design IoT devices to verify
the legitimacy of all connection attempts themselves to detect
and counter ineffective in-network access control caused by a
malicious or malfunctioning IoT entry (cf. Section V-A1c).
To this end, we base the local access control on a secret
key kaccess that only the IoT device and legitimate clients
know. Specifically, we derive kaccess from the master secret
established between IoT device and client during the one-
time bootstrapping phase (cf. Section V-A1a). We instruct the
client to use kaccess to calculate an HMAC to authenticate the
content of the IoT connect cell sent via the IoT entry to an
IoT device to establish a connection (cf. Section V-A1). Upon
reception of the IoT connect cell, the IoT device validates the
HMAC and only accepts the circuit if the HMAC is correct.
Thus, to connect to the IoT device, an adversary requires
knowledge of kaccess (only known by IoT device and client).

2) End-to-End Security: To protect transmitted data against
sniffing or modification, IoT devices enforce end-to-end en-
cryption and data authentication. To this end, we implement an
authenticated Diffie-Hellman (DH) key exchange [45] within
the cells that client and IoT device exchange during circuit
establishment via the IoT entry (Figure 3a (2)), similar to a
traditional circuit extension. Thus, client and IoT device share
perfect forward secret keys for end-to-end security.

However, for severely resource-constrained IoT devices,
already a single DH key agreement leads to significant pro-
cessing overhead, e.g., 117 s on a Zolertia Z1 (MSP430 16-bit
CPU@16 MHz). To speed up connection establishment for this
device class, we optionally replace the DH key exchange. To
this end, the client replaces its DH share in the IoT connect
cell with a nonce. Client and IoT device use this nonce and
their preshared master secret to derive a fresh secret se2e
which they use in place of the otherwise DH-derived secret. As

detailed in our security discussion (Section VII), this removes
perfect forward secrecy (PFS) against IoT entries but the onion
encryption layers still achieve PFS against all other entities.

C. Offloading to a Delegation Server

As public key operations involve high processing overheads
for IoT devices, we design a delegated circuit establishment to
enable IoT onion routing between two constrained IoT devices
(Figure 3b). Afterward, we adapt this approach to allow IoT
devices to hide their location from communication partners
by operating as IoT onion service (Figure 3c). Besides public
key operations for circuit creation, our design requires a single
public key operation by the IoT device to establish a DTLS
connection to the IoT entry (cf. Section V-A1b). IoT devices
only rarely establish this long-term DTLS connection. Still,
we refer readers to delegation-based DTLS [25] as method to
also relieve IoT devices from DTLS public key overhead.

1) Circuit Establishment with a Delegation Server: Since
the establishment of circuits involves high processing overhead
for resource-constrained IoT devices, we introduce the concept
of a delegation server, a trusted entity operated by the IoT
device owner. As untrusted networks used by IoT devices lack
such a trusted entity, our design allows for deployment of the
delegation server anywhere in the Internet, e.g., on the IoT
device owner’s home router or web server. As we show in
Figure 3b, the task of the delegation server is to establish
circuits on behalf of the IoT device (2), and hand over the
circuit to the IoT device via the IoT entry (3).

Our design intentionally relies on the delegation server only
for connection establishment. The alternative, i.e., relaying all
data through the delegation server, would incur a performance
penalty resulting from longer circuit lengths and load on the
delegation server. In the following, we describe the delegation
approach when connecting two IoT devices, but the approach
likewise allows an IoT device to establish circuits to traditional
Internet devices and onion services or IoT onion services.

To trigger a delegated circuit establishment, an IoT device
and its delegation server maintain a long-term IoT onion
routing circuit. To unburden the IoT device from establishing
this circuit itself, the powerful delegation server establishes the
circuit to the IoT device (cf. Figure 3a). We (explicitly) use a
circuit as control channel to hide the relationship between the
IoT device and its delegation server, and thus its owner.



To start the delegated circuit setup to another IoT device,
the initiating IoT device (initiator) uses the long-term circuit to
inform the delegation server about the desired target (Figure 3b
(1)). The delegation server then establishes a circuit to the
target (Figure 3b (2)). Intuitively, this circuit needs to flow
from the IoT entry of the initiator (Figure 3b left) over some
middle node to the IoT entry of the target. This behavior
guarantees unlinkability between initiator and target.

To further conceal the relationship between delegation
server and initiator, the delegation server temporarily adds two
additional ORs to the start of the circuit, i.e., before the IoT
entry of the initiator. This step is important as any link between
these two devices would reveal the identity of the initiator’s
owner. The two additional ORs are removed from the circuit
when it is handed over to the initiating IoT device.

To actually hand over the circuit to the initiating IoT device,
we introduce an IoT handover cell (Figure 3b (3)) which
extends the IoT connect cell used by powerful clients. The
delegation server sends this IoT handover cell to the IoT
entry (third OR). The IoT entry applies the same cookie-based
access control as for IoT connect cells and forwards the IoT
handover cell to the IoT device (cf. Section V-A1). Besides the
secret for end-to-end security, the IoT handover cell provides
the IoT device with the keys to create onion encryption layers
for the third, fourth, and fifth OR. To finish the handover, the
IoT device instructs the IoT entry to close the circuit towards
the delegation server and relay any further onion cells between
the IoT device and the target (Figure 3b bottom).

By introducing the delegation server, we unburden IoT de-
vices from any public key overhead for circuit establishment.

2) Hiding IoT Device Location – IoT Onion Service: IoT
devices should not only be able to prevent outsiders to link
them with communication peers, but also hide their location
from clients. For example, researchers, rangers, or insurances
are interested in live status information such as medical condi-
tion of IoT-equipped pets and wildlife, or attrition of machines.
While owners may provide such access for the common wealth
or financial benefits, the data gathering purpose does often not
justify access to location information which would invade the
privacy of the IoT device owner. As traditional onion routing
hides device locations with onion services, we also strive to
allow IoT devices to operate as IoT onion service. To this end,
we (i) offload the traditional onion service circuit setup (cf.
Section III) to the delegation server and (ii) hand over the final
circuit to the IoT device that acts as IoT onion service.

Our delegated circuit setup (Section V-C1) in principle
already affords to hide the location of IoT devices by dele-
gating any circuit setup required to operate as onion service.
However, to relieve resource-constrained IoT devices from
processing multiple handovers, we enable them to offload the
complete onion service circuit setup to their delegation server.

Figure 3c shows the connection setup to an IoT onion
service. Up to Step (5) we use the design of traditional onion
services. Specifically, the delegation server—on behalf of the
IoT device—advertises itself as onion service in the OSDir (1)
and establishes circuits to introduction points (2). To connect,

a client first selects and establishes a circuit to a rendezvous
point (3) and then connects to one of the delegation server’s
introduction points, thereby sending a traditional introduce cell
which contains information on the rendezvous point (4).

Deviating from the traditional design, the delegation server
uses our delegated circuit establishment to connect to the
rendezvous point (5) and hands over the circuit to the IoT
device (6). The handover again includes the cookie-based ac-
cess control to authenticate the delegation server. Furthermore,
it provides the IoT device with keys for the circuit up to the
rendezvous point and—for onion services mandatory—end-to-
end security. Additionally, the delegation server extends the
IoT handover cell with a precomputed traditional rendezvous
cell. Returning to the traditional design, the IoT device for-
wards this rendezvous cell to the rendezvous point to let it
interconnect the circuits created in Steps (3) and (5). As the
rendezvous cell contains the public DH share for end-to-end
security negotiated by the delegation server (henceforth used
by the IoT device) the rendezvous point relays it to the client.
Subsequently, client and IoT device can exchange payload. As
important aspect of our design, clients do not even notice that
the onion service is operated by an IoT device as the delegation
server and IoT entry handle all IoT specific mechanisms.

As for scenarios without hidden location, we require clients
to legitimate their access to IoT devices. To this end, the
delegation server applies—traditionally optional—onion ser-
vice client authorization [20], i.e., among other things, it adds
encrypted introduction points to the onion service directory.

VI. EVALUATION OF IOT ONION ROUTING

To show the applicability of our design and evaluate its
performance, we implemented it for the widely deployed onion
routing network Tor and performed measurements both in a
controlled local testbed and the real Tor network.

a) Implementation for Tor and Contiki-NG: We imple-
mented IoT onion routing for Tor 0.3.2 [16], [35]. Specifically,
we enhanced the onion relay implementation with IoT entry
functionality and adapted the Tor client to support our connec-
tion establishment with cookies. By further enhancing client
functionality with our circuit handover approach, we realized
a delegation server for Tor. With similar adaptations to Tor’s
onion service code, we extended the delegation server to also
assist IoT devices to operate as IoT onion service.

To enable IoT devices to use onion routing, we implemented
IoT device functionality for the operating system contiki-
ng [46]. We use tinyDTLS [47], [48] to realize DTLS connec-
tions to IoT entries. Based on these connections, we realized
the cookie registration at IoT entries. Furthermore, we ported
the cell processing of Tor and added support for our IoT-
specific connect and handover cells. Finally, we implemented
acknowledgments to retransmit and reorder cells that IoT entry
and IoT device exchange over unreliable UDP/DTLS.

b) Deploying Onion Routing for the IoT: To evaluate
the performance, we deployed our implementation in a local
testbed as well as interconnected it with the real Tor network.
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Fig. 4. Processing at IoT entries is mostly indistinguishable from traditional
ORs. Hence, they can support IoT functionality without performance penalties.

To realize all three scenarios (cf. Figure 3), we run our IoT
device implementation on two OpenMote B (ARM Cortex-
M3@32 MHz, 32 kB RAM) which provide connectivity via an
802.15.4 network. Furthermore, we used four desktop grade
machines (Intel i5@3.3 GHz, 16 GB RAM) to deploy two IoT
entries, one delegation server, and one (powerful) client. For
our local testbed, we deployed four additional desktop grade
machines with Tor’s traditional onion relay implementation.

Furthermore, to derive runtime performance for extremely
constrained IoT devices, we measured onion routing process-
ing on a Zolertia Z1 (MSP430 16-bit CPU@16 MHz).

To not impede the security of users in the real Tor network,
we tested our implementation in our isolated local testbed and
only moved to the real Tor network once our implementation
proved to operate correctly. When deploying our IoT entries
in the real Tor network, we ensured to only perform mea-
surements on our own circuits. To this end, we marked our
own circuits with a special cell sent from our client to the IoT
entry. Thus, we neither altered any traffic of real Tor users nor
performed any measurements on their circuits, as demanded
by the Tor guidelines for ethical research [49], [50].

A. Local Testbed: Influence on Performance

To gain a detailed view on the factors influencing perfor-
mance, we measured both circuit establishments and payload
transfer in a controlled local testbed. In particular, we compare
runtimes of our implementation with the performance of
traditional Tor. We show that onion routing in the IoT is
feasible for all participating devices, i.e., onion relays, IoT
devices, and delegation servers. As latencies between onion
relays vary, we further analyze the impact of latency on circuit
establishment and payload transfer. We report on the arithmetic
mean of 30 runs and show 99% confidence intervals.

1) Marginal Overhead for Tor Network: The performance
of onion relays determines the performance of the whole Tor
network as they make up circuits and forward communication
data. Thus, we first analyze the overhead for onion relays, i.e.,
we compare the runtime overhead of traditional guard and exit
nodes with our IoT entries in Figure 4. The key message is that
processing on IoT entries when establishing IoT onion routing
circuits is indistinguishable (no statistical significance) from
traditional onion routing (ranging in only tens to hundreds of
microseconds for a single circuit) regardless of the scenario,
i.e., independent of if the IoT entry forwards an IoT connect
cell or participates in a handover of a circuit from a delegation
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Fig. 5. Offloading relieves IoT devices from high Diffie-Hellman processing
times ((a) vs. (b)). The remaining overhead (a) depends on the number of
onion layer de-/encryptions in addition to end-to-end security.

server to the IoT device. Similarly, IoT entries face almost no
additional overhead for processing cells that transport payload.
Hence, IoT entries can readily provide the functionality for tai-
loring onion routing to the IoT without performance penalties.

2) IoT Devices: One Order of Magnitude Less Processing:
To show that our design makes onion routing viable for IoT
devices, we analyze their processing when establishing IoT
onion routing circuits (Figure 5a). We put these results into
perspective with the infeasible public key processing on IoT
devices required for traditional onion routing (Figure 5b).

First considering (non-location hiding) general purpose cir-
cuits, an IoT device requires about 146 ms of processing to
establish a circuit—assisted by its delegation server—as shown
in Figure 5a. This time splits almost evenly between handling
the handover ticket and processing encryption layers for onion
cells that finish the circuit establishment. In comparison, an
IoT device that accepts an incoming circuit (either from a
traditional client or a delegation-assisted IoT device) only has
to take care of end-to-end security (about 53 ms).

Considering the overhead when using (location-hiding)
onion service circuits, a circuit establishing IoT device requires
the same processing as for a general purpose circuit, as
additional processing is offloaded to the delegation server.
An IoT device that acts as IoT onion service, i.e., accepts
incoming onion service circuits, faces higher processing. More
specifically, it is assisted by a delegation server to establish its
part of the circuit up to the rendezvous point and also has to
create the encryption layers for this part of the circuit.

Overall, our work decreases the former infeasible processing
overhead at IoT devices to well manageable overheads. As
shown in Figure 5b, already the cryptographic processing
for circuit establishment alone would take an OpenMote B
2.8 s, compared to 141 to 146 ms with our IoT onion routing
approach. Establishment of a circuit to an onion service would
even require 7.7 s of processing at the IoT device, whereas IoT
onion routing still only requires about 146 ms. This benefit
increases distinctly for even more constrained IoT devices.
For example, a Zolertia Z1 would need roughly 11 min of local
processing to establish a circuit itself. Our delegation approach
reduces this to well manageable 601 ms, making onion routing
feasible for this device class. Similarly, accepting a circuit as
location-hidden IoT onion service only requires about 639 ms
of processing (instead of 32 min without delegation).
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Fig. 6. IoT connect and handover via cookies causes unnoticeable overhead
at IoT communication partners. Delegation servers face additional processing
for establishing longer circuits that hide their relation to the IoT device.

3) Viable for Delegation Servers: Next, we analyze the
overhead for (powerful) clients that connect to IoT devices
via IoT entries as well as the overhead for delegation servers
that assist IoT devices in establishing circuits.

As detailed in Figure 6, a powerful client faces no overhead
when connecting to an IoT device compared to a connection
to a traditional server via onion routing. A delegation server
that establishes a circuit on behalf of an IoT device faces only
a well manageable overhead of 1 ms to ensure its unlinkability
to the IoT device utilizing 5 ORs instead of 3 (cf. Figure 3b).

Studying the location-hiding onion service case, delegation
servers can easily manage the marginal overhead when assist-
ing IoT devices in operating as onion service (0.7 ms compared
to a traditional onion service; again due to a longer circuit)

4) Reasonable Connection Establishment Times: As the Tor
network is globally distributed, high latencies between onion
relays and towards end-points influence circuit establishment
and payload transfer times. To obtain insights into the in-
fluence of latency, we use netem to artificially apply 0, 50,
100, and 150 ms of latency between each pair of machines in
our testbed (excluding 802.15.4 networks). Figure 7 details
the resulting circuit establishment times for our three IoT
scenarios (left) and the two traditional scenarios without
IoT devices (right). As our offloading reduces IoT device
processing from infeasible several seconds to milliseconds,
local processing is almost negligible. The remaining time
for networking increases proportionally with the latency and
circuit length. Compared to the powerful client scenario, a
delegated circuit setup requires more networking due to two
low-power 802.15.4 networks (cf. Figure 3b). While our IoT
onion service scenario involves only one 802.15.4 network, it
faces more networking due to an additional and a longer circuit
for introduction and rendezvous point, respectively. Putting
our results into perspective with traditional onion routing
(right), our approach faces some overhead, mostly due to the
inevitable use of 802.15.4 networks. Importantly, our approach
yields reasonable circuit setup times (cf. real world results in
Section VI-B) especially as our offloading strikingly decreases
the local processing at IoT devices (cf. Section VI-A2).

5) Round-Trip-Times for Application Payload: To assess
the feasibility of application payload exchange with IoT onion
routing, we measured the round-trip-time (RTT) of a single
payload cell (512 byte) for our IoT and the traditional settings.
As shown in Figure 8, the RTT is again influenced by the
number of 802.15.4 networks (powerful client vs. delegated
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Fig. 7. IoT networking limits the performance compared to cable-based
networks. Delegation approaches increase connection setup times due to tem-
porarily longer circuits but initially realize feasible connection establishment.
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Fig. 8. Payload round-trip-times moderately increase due to lossy, wireless
networks of IoT devices, especially when Tor interconnects two IoT devices.

setup) or by the length of the circuit (powerful client vs. IoT
onion service). Again, IoT scenarios face overhead mostly due
to the use of 802.15.4 networks, especially as we design them
to use the same circuit lengths as in traditional onion routing.

In summary, the results obtained in our controlled local
testbed show negligible overheads for ORs that serve as IoT
entries and only small overheads for devices that assist IoT
devices. Furthermore, circuit setup and payload transfer is
dominated by the inevitable use of 802.15.4 networks.

B. Performance in Real Tor Network

To prove the actual applicability of our approach for real
onion routing networks, we interconnected our IoT entries with
the live Tor network. To approximate authentic latencies be-
tween IoT devices and IoT entries, we set the latency between
them drawing from a realistic Tor latency distribution [51].

a) Real World Connection Establishment: Figure 9a
shows that connections for our IoT onion routing scenarios
in the real Tor network can indeed be established within 1.4
to 4.2 s, with deviations between the three scenarios similar
to the observations in our local testbed. These numbers match
the time required for establishing circuits in the unmodified
Tor network. For instance, the Tor metrics project [52] reports
median circuit build times of up to 2 s for circuits of length
three. Considering that delegated circuit setup for IoT devices
and connections to onion services requires circuits with more
than three hops to hide the link between IoT device and
delegation server, the performance of establishing connections
to and from IoT devices in the real Tor network is well in line
with the performance generally achieved in the Tor network.

b) Real World Payload Round-Trip-Times: Also for the
exchange of application payload, we obtain similar results as
in our local testbed. We visualize in Figure 9b that the transfer
of one cell (512 byte) roughly takes 633 ms when exchanging
payload between a powerful client and an IoT device, 1 262 ms



for a delegated circuit with two low-power 802.15.4 networks
involved, and 855 ms for an IoT onion service. Considering
median circuit round-trip latencies in the Tor network of up
to 630 ms for connections to public servers and up to 800 ms
towards onion servers as report by the Tor metrics project [52],
the performance of IoT onion routing is clearly sufficient for
real-world deployment in IoT scenarios.

Summarizing, our IoT onion routing design overcomes pre-
viously prohibitive overheads, enabling resource-constrained
IoT devices to benefit from anonymous communication. In the
live Tor network, we even achieve a similar performance for
IoT devices as already observed for more powerful devices.

VII. SECURITY DISCUSSION

We now discuss how our approach to IoT onion routing
addresses the security requirements identified in Section IV.

a) Circuit Security: The inability of attackers to break
the encryption of circuits depends on the encryption layer keys
derived during circuit extensions. IoT onion routing uses the
traditional onion routing circuit extension and thus achieves
the same desirable perfect forward security (PFS).

However, when offloading circuit establishment to a delega-
tion server (cf. Section V-C1), encryption keys for the circuit
are sent from the delegation server to the IoT device encrypted
but without PFS (as the bootstrapping master secret lacks
PFS). This is an often selected trade-off for highly constrained
devices [25] and only the IoT entry has access to the non-
PFS secure encryption of the keys, as the circuit keys are
additionally enclosed by PFS-secure onion encryption layers.
Thus, we still achieve PFS against all other potential attackers
and provide security against malicious IoT entries as sensitive
data is—in addition to onion layers— protected by secrets
derived during bootstrapping between client and IoT device.

b) Unlinkability: The main goal of onion routing (in the
IoT) is to prevent linkage of communication partners, e.g.,
to keep supply chains private [29]. Since we construct circuits
between sender and receiver as in traditional onion routing, we
inherit security against non-global observers w.r.t. linkability.
To also prevent linkability of an IoT device to its delegation
server (and thus device owner), the delegation server uses
circuits to communicate with IoT entry and IoT device.

c) Access Control and DoS Protection: Access control
prevents unauthorized entities to access data or functionality of
an IoT device. In IoT onion routing, a benign IoT entry already
blocks (malicious) connections that lack a valid cookie for
the IoT device. Thus, our approach establishes an efficient in-
network defense against (DoS) attacks that target IoT devices.
Consequently, an IoT device only faces malicious connections
attempts if a malicious or misconfigured IoT entry does
not block unauthenticated attempts or (inadvertently) leaks
cookies. In this case, a resource efficient HMAC validation
scheme enables IoT devices to detect unauthenticated connec-
tion attempts (cf. Section V-B). Additionally, by recognizing
forged connection attempts, an IoT device can deduce mis-
behavior of the IoT entry and react by changing to another
IoT entry. To not disrupt connectivity due to such changes,
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Fig. 9. IoT onion routing in the real Tor network. Runtimes are influenced
by slow IoT networks (left/right: 1, middle: 2) and processing of onion layers
at IoT devices. Results for 100 runs (99% confidence intervals).

IoT devices should negotiate fall-back IoT entries with their
communication partners or use multiple IoT entries in parallel.

d) End-to-End Security: To prevent on-path attackers
from sniffing or modifying payload in transit, IoT onion
routing enforces encryption and authentication based on keys
derived during bootstrapping. As end-to-end security with
PFS is challenging for resource-constrained IoT devices, they
can optionally replace the PFS-secure Diffie-Hellman key
exchange with a non-PFS secure key derivation (cf. Sec-
tion V-B2). Even when replacing the Diffie-Hellman exchange,
all data, i.e., nonces for the establishment of keys and the
payload, is protected by PFS-secure onion layers. Security
against a malicious IoT entry is still established with secrets
from the bootstrapping between client and IoT device.

e) Limitations of Malicious IoT Entries: IoT entries,
just as guards in traditional onion routing, have a privileged
position as they are directly connected to IoT devices. Most
notably, this position enables an IoT entry to track the IP
address of an IoT device (including network changes in
case of mobility) and to mount correlation or traffic analysis
attacks [53]–[56]. As the security of traditional onion routing
is likewise challenged by malicious guard nodes, extensive
research has been conducted to investigate corresponding
security issues [57]–[59]. This research shows that sticking
to one guard node for a long time yields less security risk
than rapid changes, prompting networks such as Tor to keep
guards for several months or years [43]. To achieve the same
level of security, we follow a similar strategy for selecting
IoT entries (cf. Section V-A1a). Importantly, a malicious IoT
entry can only track the IoT device but neither identify its
communication partners nor the delegation server.

f) Security of IoT Entries: IoT entries are mainly con-
cerned with potential new DoS attack vectors resulting from
added functionality. As establishing circuits that include IoT
devices requires only a modest overhead compared to estab-
lishing traditional circuits, existing DoS mitigations still apply.
Likewise, mitigations available for TLS as used by traditional
onion relays can—due to the similarity of protocols—be trans-
fered to DTLS as used by IoT entries. Similar considerations
hold for mitigating potential attacks on the buffering and
reordering of packets necessary to create a reliable link in
the absence of TCP. Finally, our cookie mechanism does not
introduce a new attack vector as it is conceptually indistin-
guishable from cookies that onion relays use to interconnect



connections when acting as rendezvous point (cf. Section III).
In summary, our design of IoT onion routing aligns well

with the security design of traditional onion routing. Further-
more, we rely on well-established security concepts to reduce
the attack surface of our added functionality for IoT support.

VIII. RELATED WORK

Providing security for resource-constrained IoT devices
has been studied from various directions. JEDI [21] and
Droplet [60] enable efficient end-to-end encryption in many-
to-many publish-subscribe scenarios using untrusted third par-
ties. However, they do not hide who publishes to or reads from
a data stream. To relieve IoT devices from the expensive setup
of DTLS connections, different approaches propose to offload
processing or key establishment to trustworthy, more powerful
devices [23]–[25], [61], [62]. Another line of research shifts
tasks from IoT devices to trusted network elements, e.g.,
for DoS protection in heterogeneous environments [22] or
centralized responses to attacks [63]. While not providing
the strong security guarantees of anonymous communication,
these approaches provide valuable input for realizing crypto-
graphic operations at constrained IoT devices and improving
the performance of our approach, e.g., to realize onion routing
without any public key cryptography at the IoT device.

Still, related work shows that basic security functionality,
e.g., encryption and authentication, is not sufficient to protect
privacy in the IoT. Fachkha et al. [64] show the risks of
globally reachable IoT devices by studying probes directed at
them. From another angle, encrypted traffic still reveals private
information [65], e.g., sleep cycles [66]. While onion routing
is generally vulnerable to traffic analysis [53]–[55], we hide
the identity of devices and hence provide anonymity.

Moving towards anonymous communication for the IoT,
approaches for smart homes introduce trusted, Tor-enabled
local gateways to provide anonymous access to IoT function-
ality [31], [67]. In contrast to our delegation server which
can be located anywhere in the Internet, these approaches
require an on-site trusted gateway which is an unrealistic
assumption in untrusted networks and mobile settings. Yang
et al. [8] address resulting latency and bandwidth performance
problems in gateway-based IoT deployments by using multiple
circuits in parallel. This optimization could also be adapted
to our approach where we do not require a trusted on-path
gateway to establish circuits on behalf of resource-constrained
IoT devices. To gain even more performance, non-anonymous
channels [8] instantiate high bandwidth transmissions via Tor
circuits. This approach is unsuitable for many IoT scenarios as
the non-anonymous channel identifies communication partners
and degrades onion routing to a method for access control.
Finally, Davoli et al. [68] build an anonymization network
directly on top of IoT devices. In contrast to our work, they do
not relieve IoT devices from processing overheads but instead
put even more load on tightly resource-constrained devices.

Focusing on enhancing anonymous communication and not
specifically considering IoT devices, Baumann et al. [69]
propose to use Tor to enable device-to-device communication

even behind firewalls. However, this approach does not address
the resource-constraints of IoT devices or the use of special
IoT protocols. To address latency problems in Tor resulting
from interference of circuits, Reardon and Goldberg [70]
propose to use DTLS (on top of UDP) for communication
between onion routers. Contrary, our approach leaves the onion
network unchanged and instead deploys DTLS at the edge to
enable IoT devices to communication anonymously.

IX. CONCLUSION

As more and more IoT deployments involve (mobile) de-
vices that use untrusted networks for Internet connectivity,
the need for providing security and privacy for these devices
becomes paramount. Most importantly, these deployments
demand to hide the link between client and IoT device to
protect private habits and business secrets. While onion routing
prevents this linkage of communication partners, applying it
in the IoT domain is challenged by its large use of public
key cryptography, overburdening processing capabilities of
resource-constrained IoT devices. Furthermore, protocol in-
compatibilities hinder IoT devices to use well-deployed onion
routing networks with large anonymity sets such as Tor.

To tailor onion routing to the specific requirements of the
IoT, we introduce IoT entries that enable comparably powerful
clients such as smartphones to anonymously communicate
with resource-constrained IoT devices. Notably, we only re-
quire changes at a small number of nodes at the edge of an
existing onion routing network to provide IoT support. Thus,
we can leverage the large pool of existing onion routers in
already deployed anonymity systems. By further introducing
delegation servers, we enable IoT devices to establish onion
routing circuits despite their resource constraints and even
empower IoT device to provide location-hidden onion services.
Our implementation is publicly available [26], [27].

To show the applicability of onion routing for the IoT, we
conducted measurements in a local testbed and the real Tor
network. Our results show that we can tailor onion routing
to the IoT without diminishing security. The processing over-
heads imposed on IoT devices and delegation servers to estab-
lish anonymous connections are well-manageable. Importantly,
we observe only negligible overheads for upgrading existing
onion relays with IoT functionality. Thus, a sufficient number
of onion relays can be enhanced with IoT functionality, easing
the deployment of our approach. To further strengthen security,
we envision to realize delegation servers as secure network
functions with trusted execution environments, e.g., SGX.
This would allow us to operate the delegation server even on
untrusted infrastructure to further ease deployability.

By tailoring onion routing to the IoT, we enable resource-
constrained IoT devices to benefit from the high level of
security and privacy offered by anonymous communication.
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