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Abstract—In recent years, the amount of traffic protected
with Transport Layer Security (TLS) has significantly increased
and new protocols such as HTTP/2 and QUIC further foster
this emerging trend. However, protecting traffic with TLS has
significant impacts on network entities. While the restrictions for
middleboxes have been extensively studied, addressing the impact
of TLS on clients and servers has been mostly neglected so far.
Especially mobile clients in emerging 5G and IoT deployments
suffer from significantly increased latency, traffic, and energy
overheads when protecting traffic with TLS. In this paper,
we address this emerging topic by thoroughly analyzing the
impact of TLS on clients and servers and derive opportunities
for significantly decreasing latency of TLS communication and
downsizing TLS management traffic, thereby also reducing TLS-
induced server load. We propose a protocol compatible redesign
of TLS session management to use these opportunities and
showcase their potential based on mobile device traffic and mobile
web-browsing traces. These show promising potentials for latency
improvements by up to 25.8% and energy savings of up to 26.3%.

Index Terms—TLS Performance, Efficient Secure Communi-
cation, TLS Session Resumption, Network Security, Security and
Privacy, Mobile Networking, 5G and IoT

I. INTRODUCTION

The nature of Internet traffic is currently shifting towards a
regime where encryption is widely applied at the transport
layer for many classes of traffic to counter the threat of
pervasive monitoring [7]. This shift is reflected by the drastic
increase of HTTPS traffic in recent years. In the core (IXP),
HTTPS traffic was reported to increase by a factor of 6
from 2011 to 2013 [26]. At the edge (ISP), HTTPS traffic
was reported to increase by a factor of 2 and accounts for
44.3% of the connections in 2014 [22]. Browser telemetry
data shows a further grow from about 40% to around 60%
from 2015 to 2017 [8]. This rise of TLS traffic will continue,
e.g., strengthened by efforts in enforcing TLS by all HTTP/2
capable browsers [24], [38] and the rise of new transport
protocols such as QUIC which use TLS by default [16].
Likewise, with the advent of 5G as the next generation wireless
access technology, more and more mobile clients will use TLS.
Furthermore, already the steadily growing Internet of Things
yields millions of new devices that employ TLS to secure
communication [17].

While the rise of TLS provides confidentiality and au-
thenticity to a large class of applications, it also fundamen-
tally challenges network entities. These challenges have been
widely studied for on-path middleboxes that have to cope with
the fact that packet payload now becomes inaccessible to net-
work functions along the data path such as intrusion detection,
traffic filtering, image compression, or content caches [10],
[23], [29], [37]. In contrast, addressing the impact of TLS on
clients and servers has been mostly neglected so far. Especially
for mobile clients, the prevalence of TLS encrypted traffic
involves latency, traffic, and energy overheads.
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Current TLS architectures are not fully optimized to reduce
these overheads for clients and servers and thus provide yet
unused optimization potential. That is, the TLS-induced traffic
overhead and processing overheads can be reduced, end-to-
end latency improved, and resulting energy consumption de-
creased. One example dimension comprises the fact that many
mobile applications often establish separate connections to the
same services, each involving the establishment of separate
TLS sessions. Without compromising security properties, these
individual sessions can be shared at the operating system level.
This sharing omits unnecessary handshakes and thus reduces
the latency, traffic, and energy overheads.

In this paper, we identify and address the emerging topic of
optimizing the use of TLS with respect to latency, traffic, and
energy overheads, especially considering the needs of mobile
clients. To this end, we empirically study the potential for TLS
optimizations for mobile apps and mobile websites before we
propose a redesigned TLS session management. Our redesign
unlocks this currently unused potential to reduce traffic, la-
tency, energy consumption, and processing overhead of TLS,
especially on mobile clients. It enables client applications to
reuse session state across applications to optimize traffic—an
optimization that further benefits from independent enhance-
ments of session management on the server side leveraging
network softwarization, e.g., deployed by content delivery
networks (CDNs). This redesign can be applied easily to all
major mobile operating systems without requiring changes to
applications. Concretely, our main contributions are as follows:

• In an empirical study on Android apps and mobile web-
sites, we demonstrate potential traffic, latency, energy, and



processing improvements of advanced TLS session man-
agement. We analyze the TLS connections established by
the top 500 Android applications and TLS connections
created by browsing the Alexa top 5 000 mobile websites.
Our results show that we can reduce average latency of
TLS handshakes by up to 195 ms (23.1%) by only mod-
ifying clients. Small additional adaptions to TLS session
handling on the server side allow us to decrease average
latency even by up to 218 ms (25.8%). Our analysis shows
significant potential for reducing TLS handshake traffic,
latency for application data, and energy consumption
especially for mobile devices such as smartphones.

• Motivated by the identified potential, we show how
efficient session management for TLS could be easily re-
alized on a current smartphone. We illustrate our proposal
by focusing on Android and iOS as the two dominant mo-
bile operating systems. We outline how to easily integrate
our approach into these mobile operating systems without
major changes. Thereby, we optimize latency and energy
overhead without compromising security.

• Complementing improvement on the client side, we show
how efficient TLS session management can be supported
on the server side, especially when requests are load-
balanced to many servers (e.g., in the context of CDNs).
To this end, we make the case for sharing of session state
between servers of the same provider offered by network
softwarization approaches that are often already in place.

With this paper, we aim to open the discussion on the
emerging topic of TLS session management optimizations and
remark that further optimization potential is available beyond
the mobile web, e.g., in the context of the Internet of Things.

II. RELATED WORK

Our work aims at reducing latency and energy for TLS
and complements (orthogonal) approaches to improve the
performance of TLS. These approaches can either be combined
with our proposal to share TLS sessions across applications
or require larger changes, hence limiting their deployability.

Tcpcrypt [4] is an alternative to TLS with the goal to im-
prove performance. However, it is incompatible to the widely
deployed TLS protocol and requires changes at both servers
and clients, severely limiting its deployability. In contrast,
adopting our session sharing approach only at a client, i.e.,
without modification of servers, already significantly improves
the performance of TLS connections.

Orthogonal to our proposal to share TLS sessions across
applications, TLS resumption across hostnames [33] proposes
to resume a (single) TLS session for several domains as long
as they are covered by the same (multi-domain) certificate.
A similar approach has been proposed to reduce connection
establishment times for QUIC connections [31]. These ap-
proaches require support at both, client and server side, while
our approach to share TLS sessions across applications already
works with changes only at the client. Still, TLS resumption
across hostnames and our approach to share sessions across
applications complement each other nicely: Session sharing

across applications enables even more connections to benefit
from TLS resumption across hostnames and vice versa.

From a different perspective, the TLS false start mechanism
[18] reduces latency for full TLS 1.2 handshakes by one
RTT. To this end, the client starts sending application data
before receiving the last handshake message from the server.
However, web browsers typically disable this mechanism due
to incompatibilities and only apply it if servers signal support
using a TLS extension [11]. In contrast, our session sharing
additionally saves authentications and does not require server
support as it leverages session resumption which, being an
often used part of the TLS standard, does not incorporate
incompatibilities. Furthermore, TLS false start cannot further
improve TLS 1.3 which already uses the improved sending
behavior of TLS false start. With session sharing, we can also
decrease latency by one RTT for TLS 1.3 by enabling the use
of the early data mechanism, which is only available to session
resumptions, for a larger number of connections.

Following a similar approach, TCP Fast Open [5] enables
the start of data transmission already with the TCP SYN
packet, thus reducing the latency for TCP connection estab-
lishment by one RTT. As this transmitted data can be a TLS
message, TCP Fast Open can be combined with our approach
to even further decrease latency for the establishment of TLS
sessions. To prevent third parties from tracking users via the
cookies used by TCP Fast Open, servers can use a cross-layer
solution to securely communicate cookies to clients via the
subsequently established TLS connection, and generate a new
cookie for the next TCP connection each time [34].

From a different perspective and specifically focusing on
resource constraints in the Internet of Things, the two ap-
proaches for antedated encryption and data authentication
with templates [13] accelerate processing of TLS transmis-
sions on Internet of Things devices through the preprocessing
of cryptographic operations. As these optimizations become
relevant after the establishment of TLS connections, they
especially benefit from the reduced latency, traffic, and energy
overheads achieved by our approach to share TLS sessions
across applications.

III. STATE-OF-THE-ART USAGE OF TLS

We start our analysis of the potential of redesigning TLS
session management by reviewing the current application of
TLS. To set up a secure channel, the client triggers a TLS
handshake which involves additional overhead in terms of
public key cryptography and multiple round-trips for the
exchange of messages. Specifically, client and server use this
handshake to negotiate cryptographic algorithms and establish
secret material. Additionally, the server typically presents a
cryptographic certificate to prove its authenticity to the client
(in rare cases, a client certificate is used to likewise authen-
ticate the client to the server). Only after completing the full
TLS handshake, client and server can securely communicate
over the established connection. The information negotiated
during a TLS handshake is called a TLS session.



To reduce the involved overhead for connection estab-
lishment, established sessions can be re-used by the same
application only (and not be shared between multiple applica-
tions). This reuse mechanism is called session resumption and
it currently allows a single application to leverage existing
session information to significantly shorten the handshake
for subsequent, and also parallel TLS connections with the
same server. It thus considerably reduces cryptographic pro-
cessing and allows for earlier transmission of application
data which reduces overall transmission time [6] and energy
consumption [3]—which is why we propose to extend session
management beyond current application boundaries. An appli-
cation can leverage session resumption to efficiently maintain
multiple parallel TLS connections to the same server or for
lightweight revival of a previous connection, e.g., when the
device changes between cellular and WiFi networks. To this
end, the application includes a session identifier in the first
handshake message, enabling the server to select the session
to resume. While no strict session lifetime is enforced, the
standard suggests a validity period of one day [6] which may
be relaxed based on security requirements [28] (we observed
validity periods up to three days in our Android and website
measurements).

Session resumption involves further costs since it requires
client and server to store their respective session state. As
this might become prohibitive for servers with many client
sessions [30], TLS allows servers to securely offload their
session state to clients [28]. To this end, the server encrypts
the offloaded state and retrieves it from the client in the first
message of the session resumption handshake.

While session resumption provides clear benefits, we argue
that its potential is not fully reached yet since it is bound to
per-application sessions only and does not benefit from session
sharing gains between applications and different servers of
the same provider. Especially mobile applications, which often
employ similar services, would significantly profit from TLS
session sharing across these applications. We will show these
gains in Section IV by analyzing popular Android apps and
mobile websites.

A. Further Evolution of TLS

In addition to the benefits provided by session resumption
today, the new TLS 1.3 standard [25] enables the secure
transmission of application data already with the first message
of a session resumption handshake (referred to as early data
or 0-RTT data). To protect the 0-RTT data, the former session
setup derives early data secrets for a future resumption with
0-RTT data. Likewise, the server can include application data
already in its first handshake message (0.5-RTT data). In con-
trast to 0-RTT data, the server protects 0.5-RTT already with
fresh secrets derived with a public key share sent in the first
message of the client. Thus, 0.5-RTT data is already available
in a full handshake and not limited to session resumption
handshakes. However, data sent by servers typically relies
on input of clients, e.g., the request of a specific website.
Hence, a server can typically leverage 0.5-RTT data only if

Fig. 1. Inefficient session management of clients is responsible for a huge
number of unnecessary full TLS handshakes (dashed lines) and sessions.

the client transmits its request as 0-RTT data, which is limited
to session resumption. Thus, session resumption unleashes
the full potential of 0.5-RTT data as it enables clients to
send requests as 0-RTT data such that the server can use the
opportunity to send the response as 0.5-RTT data.

In summary, by employing 0-RTT data, TLS 1.3 enables
clients to receive protected responses for requests within 1
round-trip, compared to 2 round-trips with today’s session
resumption, or even 3 round-trips without session resumption.
Hence, the ability to use session resumption for many con-
nections, as enabled by our proposal to share TLS sessions
between different applications, will be even more beneficial
with the increasing deployment of TLS 1.3.

B. Current Limitations of Employing TLS

With the increasing prevalence of TLS, mobile clients are
challenged by the resulting increase in flow completion times,
traffic overhead, and energy consumption. A full TLS hand-
shake, e.g., can add up to 906 ms of latency for application
data on smartphones [3].

While session resumption today allows for reducing the
overhead introduced by TLS within one application, the same
does not hold when considering simultaneous TLS connections
across different applications. This results from the predomi-
nant paradigm of implementing TLS as a library in the context
of individual applications. Corresponding restricted access to
session state prevents the benign sharing of session state
among different applications to benefit from the advantages
of reusing session state across applications.

Hence, as depicted in Figure 1, if multiple applications on
the same client establish secure connections to the identical
server, they have to execute many full handshakes. Up to
79.4% of these handshakes are redundant (see Section IV),
thus resulting in unnecessary processing overhead for authen-
tication mechanisms, generation of superfluous traffic, and
increased delay before the transmission of application data can
take place. Involved energy overheads additionally decrease
operational time of mobile devices before they require recharg-
ing. Besides disadvantages for mobile clients, which trigger
session resumption, limiting session resumption to connections
within the same application also puts unnecessary load on
servers.



IV. SESSION SHARING: UNUSED POTENTIAL

TLS session resumption as a mechanism to speed up the
establishment of recurring connections is currently limited
to within-application session resumption and does not yet
leverage benefits by between-application session sharing. To
overcome this inefficient session handling, which is especially
disadvantageous to mobile clients as we will show next,
we propose to share TLS sessions across applications (see
Section V for the realization on Android and iOS). This
enables us to unleash the full potential of session resumption
and, hence, provide significant benefits, especially for mobile
clients. Since session sharing lowers the connection setup
RTTs, it will ultimately contribute to the efforts to raise
adoption of TLS by considerably increasing performance and
decreasing involved traffic and energy overheads.

A. Conceptual Benefit Analysis

We start our analysis of the benefits of between-application
session sharing by showing the optimization potential con-
ceptually in Figure 2, before we describe our measurement
study in the remainder of this section. Recall that today,
even when connecting to the same service, each application
performs its own full TLS handshake. The cost of performing
handshakes particularly dominates short-lived connections that
prevail in current web and mobile app traffic patterns [15],
[21]. In contrast, with our proposed session sharing con-
cept, only the first application that connects to a service
executes this rather expensive handshake (see Figure 2b).
Further applications that connect to the same service can then
leverage the existing session for session resumption to benefit
from an improved latency by one RTT (depicted as unused
potential in Figure 2b), decreased traffic, and reduced energy
consumption due to the omitted full handshake. While this may
suggest only minor improvements per-connection, the overall
savings become relevant in the presence of many short-lived
connections, especially for mobile clients. To further explore
this potential, we next focus on an empirical analysis of the
optimization potential by evaluating application traffic.

B. Empirical Benefit Analysis

Especially mobile applications and websites repeatedly em-
ploy the same services, e.g., when including social network
functionality [12]. We therefore show the potential of session
sharing for i) mobile apps and ii) mobile websites.

1) Benefits for Mobile Applications: Different mobile ap-
plications often access the same services (e.g., social networks,
analytic services, advertising networks, or cloud storages) [12],
but are required to perform individual TLS handshakes. We
show that these individual TLS handshakes are often unneces-
sary and can be optimized by proper TLS session management
without compromising security properties. Thus, we demon-
strate the potential of session sharing across applications to
reduce traffic and processing overhead, improve end-to-end
latency, and decrease energy consumption based on traffic
generated by Android applications.

Client

Fi
rs

t A
pp

Server

Key exch.

Application Data

Auth.

Key exch.

Application Data

Auth.

O
th

er
 A

pp
s

(a) Separate TLS usage

Client

Fi
rs

t A
pp

Server

Key exch.

Application Data

Auth.

O
th

er
 A

pp
s

Key exch.
App Data

Unused Potential

(b) Session Sharing

Fig. 2. With separate TLS usage (a), each application performs its own
handshake (here we show TLS 1.3). With our session sharing approach (b)
only the first application executes a full handshake. Later on, other applications
can leverage the existing session to use session resumption which saves the
authentication and decreases the latency by one RTT. Session sharing also
achieves this reduction for TLS 1.2, which, compared to TLS 1.3, typically
requires one additional RTT before starting the key exchange.

a) Measurement setup: To showcase the applicability
and potential of session sharing, we analyzed the TLS con-
nections of the top 500 free Android applications from the
Google Play store. We note that a single user typically does
not use all these apps. However, our analysis already showed
benefits when considering only the top 10 applications. For our
measurements, we instrumented a Nexus 7 (2013) operating
Android 6.0.1 to execute each application for 30 seconds
while supplying random user input with Google’s Application
Exerciser Monkey [2]. During the execution, we captured
and analyzed the network traffic of the device to obtain
the number of full TLS handshakes as well as the number
of within-app session resumptions. To further determine the
amount of connections that could employ session resumption
when sharing sessions across application, we grouped the
TLS connections of all applications by IP address and server
name indication (SNI). The SNI is exchanged during the TLS
handshake to indicate the target domain of the connection [36].
Thus, it enables us to distinguish TLS connections to different
services that are reachable via the same IP. As we observed
differences in TLS connections established during the first start
of an application after installation compared to subsequent
starts (which we attribute to application initialization), we
executed each application two times and only consider the
second run for our analysis. To quantify energy consumption
and latency of TLS handshakes, we rely on measurements
performed by Ariyapala et al. [3].

b) Significantly more usage of session resumption: Our
measurements, which we summarize in the left half of Table I,
comprise a total of 4 995 TLS handshakes of which 80.5% are
full handshakes. Session sharing on the client side would dras-
tically reduce this ratio to 30.8%, decreasing delay by 168 ms,
and saving 20.4% of energy on average. Still, these results
are limited by content delivery networks (CDNs), which often
serve client requests from different servers, e.g., to balance



Top 500 Android applications Alexa top 5 000 mobile websites

Unmodified
Client + Server

Modified
Client only

Modified
Client + Server

Unmodified
Client + Server

Modified
Client only

Modified
Client + Server

Full Handshakes [#] 4 021 (80.5%) 1 538 (30.8%) 828 (16.6%) 57 719 (81.7%) 17 029 (24.1%) 12 539 (17.7%)
Resumptions [#] 974 (19.5%) 3 457 (69.2%) 4 167 (83.4%) 12 935 (18.3%) 53 625 (75.9%) 58 115 (82.3%)
∅ Energy [µAh] 51.29 40.80 37.80 51.54 39.39 38.05
∅ Latency [ms] 840.44 671.96 623.79 844.48 649.29 627.75

TABLE I
SESSION SHARING SIGNIFICANTLY INCREASES THE AMOUNT OF SESSION RESUMPTIONS FOR ANDROID APPLICATIONS (LEFT) AS WELL AS FOR MOBILE

WEB-BROWSING (RIGHT), THUS DECREASING AVERAGE LATENCY AND ENERGY CONSUMPTION PER HANDSHAKE. LATENCY AND ENERGY
CONSUMPTION ARE BASED ON MEASUREMENTS FROM [3].

load. Typically, session resumption in this setting requires
multiple full handshakes for the same service (one per server)
as session secrets are only available at the host that established
the session. To overcome this limitation, modifications on the
server side can enable different servers of a CDN to still
resume the same session (see Section V-B). Using the SNI
and autonomous system as indicators for connections to the
same CDN, we estimate that server-side session sharing further
reduces full handshakes up to 16.6% and thereby decreases
average latency by additional 48 ms (217 ms in total).

Notably, adoption of these modifications by CDNs is ex-
tremely likely as the increase in TLS traffic also challenges
servers by imposing overhead which can significantly be
reduced by session sharing at the client side. Additionally, the
increased latency of TLS (compared to unencrypted traffic) can
significantly decrease the revenue of web services. Amazon,
e.g., observed that a 100 ms increase in latency reduced their
sales rate by 1% [9], [20]. Support of session sharing at clients
by CDNs can decrease this latency and thus increase revenue.
In fact, Twitter and Cloudflare, e.g., already support server-
side session sharing to enable within-app session resumption
across their servers (see Section V-B).

c) Detailed analysis of CDN influence: To highlight the
influence of CDNs on the benefit of sharing TLS sessions
across applications, we illustrate the number of applications
that connect to a specific service (i.e., distinct SNI) via TLS
for the 10 most often used services in Figure 3. Here, each
colored area represents the number of applications connecting
to a single host (IP address) of this service, while the full
bar represents the total number of applications that connect to
this service across all hosts (i.e., using any of the IP addresses
that provide access to the service). We observe that Flurry
(data.flurry.com, a mobile app analytics service) serves all our
requests from a single host (the bar has a single area) although
we conducted our measurements across three days, and thus
expected changing hosts. Consequently, Flurry enables us to
already leverage the full potential of session sharing by only
adapting clients. Also for Facebook (graph.facebook.com),
which served our device with two hosts, clients almost draw
full benefits without specific server support.

On the other extreme, some services employ many hosts,
e.g., we observed 89 hosts that serve requests to the
crash reporting and statistics service Crashlytics (the bar for
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Fig. 3. Top 10 web services used by the top 500 free Android applications
via TLS. Services (DNS names) hosted by multiple hosts (IPs) depicted by
colored areas: bar height denotes the number of apps connecting to a host.

e.crashlytics.com comprises 89 areas). In this case, session
sharing requires server support to optimize 104 of 105 full
handshakes (notably, some applications unnecessarily perform
multiple full handshakes), while missing CDN support limits
the application of session sharing to only 16 of those hand-
shakes. However, we again highlight that adoption of support
for session sharing by CDNs is likely as for Crashlytics, e.g.,
this saves 99.0% of full handshake related processing and
traffic overhead while missing support reduces these benefits to
only 15.2%. This also affects average latency which decreases
by 51 ms without server support, but by 329 ms with server
support, significantly increasing revenue [9], [20]. We remark
that services that use measures to almost always serve a
specific client from the same host, e.g., as we observe with
Facebook, sparsely benefit from server support. However,
in this case, clients already achieve maximal benefits from
session sharing even without server support.

Apart from the extremes, for most services with multiple
hosts, session sharing already excels without CDN support,
e.g., 126 applications connect to Google’s advertising network
Doubleclick (googleads.g.doubleclick.net) which served the
applications in our measurements from 22 different hosts.
Here, session sharing applies to 85.8% of full handshakes
without server support (99.3% with server support) and
thereby decreases average latency by 282 ms (328 ms).



d) Not sharable sessions are seldom: As we detail
in Section VI, we cannot share sessions with authenticated
clients (i.e., using client certificates) across applications due
to security reasons. However, only 5 out of a total of 4 995
TLS connections in our measurements employed this optional
feature. Further, corresponding services anyway do not benefit
from session sharing as each is used by exactly one applica-
tion. Hence, excluding sessions with client authentication from
session sharing does not negatively affect its huge potential.

2) Benefits for Mobile Websites: More and more mobile
applications encompass browser functionality, e.g., to browse
newspaper articles. To account for this evolution, we further
measured the TLS usage during web-browsing. To this end,
we instrumented Chrome to visit the mobile versions of the
Alexa top 5 000 websites [1].

We depict the result of our analysis in the right half of
Table I. Overall, we observed 70 654 TLS handshakes of which
81.7% are full handshakes. Session sharing across applica-
tions again drastically decreases this to 24.1% without and
17.7% with support by CDN servers. Thereby, average latency
decreases by 195 ms and 217 ms, respectively. These latency
decreases are more drastic as compared to pure application
traffic because of the lower fraction of session resumptions
in the unmodified case. Again, client authentication has no
relevant impact as only 8 connections applied it.

Figure 4 shows the number of websites employing the
10 most popular web-services (distinct hostnames) via TLS.
Again, Facebook serves a client from only a few hosts which
enables clients to leverage full benefits of session sharing
without server support. Other services, e.g., the ad network
Adnxs, heavily distribute connections of a single client to
multiple hosts such that average latency reduces by 154 ms
for client only support, but by 268 ms with server support.
However, the majority of web-services moderately distributes
client connections such that session sharing provides consid-
erable benefits without server support, e.g., Google Analytics
with 10 hosts shows an average latency reduction by 337 ms
with server support of which already 331 ms can be achieved
without server support.

Our analysis of TLS handshakes in both use cases, i.e.,
mobile applications and browsing on mobile devices, shows
the huge potential of session sharing across applications with
respect to latency and energy consumption. Depending on the
setup as well as the support by clients and servers, session
sharing across applications allows us to reduce the number
of necessary full TLS handshakes by 79.4% for apps and
by 78.3% for browsing, respectively. Thereby, session sharing
removes the superfluous overhead introduced by the traditional
isolated way applications use TLS sessions today. Encouraged
by these empirical observations, we next illustrate how session
sharing can be realized for both clients and servers.

V. TOWARDS REALIZING SESSION SHARING

In light of the identified potential of sharing TLS sessions
across applications, we now outline approaches for realizing
session sharing on the client side, specifically for mobile
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Fig. 4. Top 10 web-services used by Alexa top 5000 websites via TLS.
Again, multiple hosts per service depicted by colored areas.

devices using Android and iOS. We then discuss how to
amplify benefits of session sharing through support on the
server side, especially considering CDNs.

A. Sharing TLS Sessions Across Applications

Our analysis highlights that session sharing provides consid-
erable benefits, even if only clients support it. Hence, we first
propose an approach that clients can apply without any support
by servers, which significantly eases deployment. To realize
the potential of session sharing across applications without
the need to modify each single application, we leverage the
fact that mobile applications typically employ the TLS API of
the mobile operating system to use the TLS implementation
shipped with the operating system. That is, as we show in
Figure 5, we only need to adapt Android’s Security Provider
and the App Transport Security (ATS) of iOS to enable
millions of applications to benefit from the advantages of
session sharing across applications without any modifications
to the applications itself. To this end, we propose to integrate
the already existing TLS implementation, which is currently
linked to applications at runtime, as a system component,
which we refer to as the TLS manager. We can then modify the
security provider (Android) respectively app transport security
(iOS) to use this system component.

Introducing the TLS manager enables us to realize faster
connection establishment through session sharing across ap-
plications, which we realize based on session resumption that
is already present in TLS. As for every TLS implementation,
each application still has its own TLS connection. However,
in the case of resumable sessions with the same server (also
from other applications), the TLS manager can use session
resumption to speed up the connection establishment. This
extension can be implemented easily, since session resumption
is already available in the TLS implementations. Only client
authentication requires us to slightly modify the TLS imple-
mentation to enforce session sharing restrictions, i.e., sessions
with (seldom used) client authentication must not be resumed
across applications to prevent impersonation of another ap-
plication (see Section VI). An optimized version could still



allow for resumption in the case of client authentication if an
application can prove possession of the same client certificate
as already used in the session. Notably, benefiting from session
sharing improvements only requires us to moderately modify
the management of TLS sessions. Importantly, our realization
does not require server-side changes since we leverage session
resumption which is already widely supported by servers [27].

Additionally, applications still use the unmodified API of
the security provider (Android) respectively app transport
security (iOS) to obtain TLS session information from the TLS
manager, e.g., server certificates and employed cryptographic
algorithms. Notably, these APIs already prevent applications
to access session secrets that would allow them to tamper with
all connections based on this session, i.e., also connections of
other applications. Realizing the TLS manager as a system
component only further prevents malicious applications to
extract session secrets from their memory. Thus, our proposed
scheme does not compromise security since session secrets
are sealed by the TLS manager and applications continue to
communicate via separate connections, for which, however,
we drastically decrease handshake overheads.

B. Amplification with Support by CDNs

As shown by our measurements, session sharing already
excels without specific support by servers, but shows even
better results when session sharing works across different
servers used to respond to requests, e.g., in the case of content
delivery networks (CDNs). That is, joint usage of session state
between servers that load balance their processing allows for
increased usage of session resumption (a challenge that already
exists without our optimized session management). To leverage
this unused potential, different servers of a CDN must be
able to resume the same sessions. Twitter and Cloudflare, e.g.,
already support this to enable within-app session resumption
across their servers [14], [19]. To this end, they employ their
CDN management network to either synchronize TLS sessions
across servers or synchronize the secrets that protect offloaded
session tickets (see Section III) to decrypt and verify tickets on
any of their servers. One promising approach to synchronize
TLS sessions or corresponding secrets across different servers
leverages the capabilities of network softwarization, e.g., using
software-defined networking [35].

To also leverage this support for session sharing across ap-
plications, the TLS manager on a client must select the correct
session for different servers of a service. As our measurements
show, applications already provide the service name to the
Android security provider which sends it as server name indi-
cation (SNI) in the first handshake message. Likewise, the app
transport security of iOS obtains this information. Servers use
the SNI to multiplex connections to the correct service. The
TLS manager, however, can leverage it to determine the correct
session by comparing the SNI provided by the application with
the SNIs used by existing TLS sessions. Alternatively, it can
compare the provided SNI with server certificates of active
TLS sessions. This additionally allows us to reuse sessions
for different subdomains under control of the same entity, e.g.,

(a) Android (b) iOS

Fig. 5. Session sharing can be realized by adapting the Android Security
Provider and the iOS App Transport Security (ATS) already used by apps.

www.facebook.com and connect.facebook.net, if the certificate
is valid for both. This is a sensible decision as the certificate
provides a strong indication that the same provider operates
both services.

It is important to note that selecting a session on the client
side that the server cannot resume (e.g., because the session
state has not been synchronized) neither affects security (see
below) nor considerably decreases handshake performance.
Specifically, if encountering a session identifier or ticket that
it cannot resume, a server proceeds with a full handshake
(without additional messages). Thus, a failed resumption adds
an only small overhead for transmitting the session identifier or
ticket in the first handshake message of the client, on average
32 Byte for a session identifier or 187.98 Byte for a session
ticket in our Android measurements.

VI. SECURITY CONSIDERATIONS

Given the huge potential and promising feasibility results for
sharing TLS sessions across applications, we discuss security
implications of our proposed session sharing scheme. Overall,
our approach does not compromise the security properties of
TLS connections since the TLS manager handles all session
secrets such that applications have no access to them and
thus cannot tamper with connections of other applications. We
note that applications continue to communicate via separate
connections with own security keys, but the TLS manager
establishes these keys with session resumption instead of full
handshakes to save corresponding overheads. These separate
connections with their own keys prevent that a malicious
application can obtain secret keys of its own connection, e.g.,
with a chosen-ciphertext attack, to then use these keys to
decrypt the communication of other applications. Furthermore,
the separate connections enable the TLS manager to easily
associate data streams with the correct application for data for-
warding. Although applications have no access to the session
secrets, they still are able to check security parameters of an
established TLS session or present them to users. To this end,
the TLS manager provides access to non-critical session in-
formation, e.g., server certificates or negotiated cryptographic
algorithms, via the API of the security provider (Android) or
app transport security (iOS), respectively.

Next, we discuss the security implications of the centralized
handling of TLS connections at the TLS manager. Importantly,
the TLS manager can realize session sharing based on the well-
established TLS implementation shipped with the (mobile) op-



erating system. Thus, we argue that the centralization of TLS
handling does not introduce new security risks with respect
to the implementation of TLS or cryptographic functionality.
Specifically, if a security vulnerability affects the TLS imple-
mentation of the operating system, this affects all applications
regardless of whether they rely on the TLS implementation
directly or indirectly via the TLS manager. Furthermore, the
strong coupling of connections and applications as discussed
above and straightforward checks that identify situations that
do not allow for session sharing (see below) minimize the risk
for security vulnerabilities introduced by the TLS manager.

Considering services operated on the server side, e.g.,
provided by a CDN, a client may try to resume a session
that the server has no knowledge about (e.g., because the
session state has not been synchronized with this server).
This neither decreases the performance (see Section V-B)
nor compromises security as session identifiers provide no
value without the corresponding session [6] and tickets are
protected during offloading as, already during within-app
session resumption, any party on the communication path gets
access to them [28]. Session resumption identifiers, however,
allow for tracking of users across multiple connections as
they link all connections to a single session [32], which is a
general problem of TLS session resumption. Session sharing
across applications can facilitate this problem as it increases
the amount of connections per session. However, application
developers can alternatively realize this tracking with device-
specific identifiers. Content providers without access to the
application, e.g., CDNs, might learn which applications share
a session based on the requested content, but lack access to on-
device information for more detailed tracking. For applications
that provide personally identifiable information to such third
parties, we recommend to selectively opt-out from session
sharing.

Importantly, session sharing is not applicable to sessions
that use client authentication. Sharing such a session would
enable other applications to establish an authenticated session
without possession of the corresponding certificate which is
typically bound to a single application. However, the use of
client authentication is almost non-existent for mobile app and
website traffic (see our empirical evaluation in Section IV).
To ensure that session sharing is not used for sessions that
use client authentication, our TLS manager keeps track of
such sessions and creates a new session for each separate
application. To offer further control over the security of TLS
sessions to applications, we envision that applications can
completely opt-out from session sharing, e.g., if they link
sessions to further state, which is, however, unusual as not
covered by the TLS standard.

Regarding joint use of sessions on the server side, e.g.,
in a CDN, we note that a single misconfigured server may
compromise security of all TLS sessions in the complete clus-
ter of servers. However, Twitter and Cloudflare, e.g., already
synchronize sessions among their servers to increase benefits
from within-application session resumption. Leveraging this
existing support to increase benefits of session sharing across

applications does not increase the requirements on secure
handling of sessions by servers. Furthermore, session sharing
at clients already proves valuable without server support.

Consequently, our approach to share TLS sessions across
applications does not compromise security properties on the
client side, while achieving the same level of security for
synchronizing TLS sessions across different hosts on the
server side as in today’s deployment for supporting within-
application session resumption across different hosts.

VII. CONCLUSION AND FURTHER POTENTIAL

The rising amount of TLS traffic increases the amount
of securely communicated data, but also leads to increases
in latency, traffic, and energy overheads, which is especially
problematic for mobile clients in emerging 5G and IoT deploy-
ments. In this paper, we revealed potential for (mobile) clients
to significantly decrease these overheads through a protocol-
compliant redesign of TLS session management. Without
compromising TLS security properties, our approach enables
the sharing of TLS sessions across applications to increase
the potential for benefiting from session resumptions. We
have shown the potential of this approach to reduce TLS-
induced traffic, end-to-end latency, and energy overheads of
(mobile) clients both conceptually and with empirical analysis
of TLS usage by mobile applications and mobile websites.
Given the tremendous benefits, we discussed the envisioned
realization of session sharing for Android and iOS without
requiring changes to existing mobile applications. We further
discussed how support on the server side, offered by network
softwarization approaches that are often already in place, can
yield even higher gains when different servers handle requests,
e.g., in the context of content delivery networks.

For future work, we envision a realization of TLS session
sharing for mobile operating systems to enable us to analyze
its benefits in real user environments. Specifically, we want to
analyze the effect of session sharing based on the individual
application sets of users and their real behavior opposed to our
analysis based on Google’s Application Exerciser Monkey.

However, the benefits of sharing TLS sessions across
applications are not limited to mobile clients and broadly
open the space for further optimizations. For example, non-
mobile clients can benefit from TLS improvements in light
of transitioning from stand-alone to cloud services. Further-
more, we have shown that also servers significantly benefit
from session sharing due to decreased management traffic,
less cryptographic processing, and increased revenue, whose
evaluation opens the need for further research. Moreover, the
improvements of the rising TLS 1.3, especially its early data
mechanism which will be applicable more often due to session
sharing, promise further interesting directions for researching
efficient secure communication. Thus, we believe that the
potential identified in this paper provides an important first
step towards optimizing the costs of secure communication for
a broad class of applications—both at the server- and client-
side—and thus offers exciting new research potential.
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