
InternatIonal Journal of GrId
and HIGH Performance

comPutInG

	 Special	Issue	on	Cloud	Computing	Technology	and	Science

	 Research	Articles	
1	 Cloud	Computing	Technology	and	Science
	 Ching-Hsien	Hsu,	Department	of	Computer	Science	and	Information	Engineering,	Chung	Hua	University,	Hsinchu	City,	Taiwan
	 Emmanuel	Udoh,	College	of	Information	and	Computer	Technology,	Sullivan	University,	Louisville,	KY,	USA

5	 Measuring	the	Characteristics	of	Hypervisor	I/O	Scheduling	in	the	Cloud	for	Virtual	Machine	Performance	Interference
	 Ziye	Yang,	EMC	Labs,	Shanghai,	China
	 Haifeng	Fang,	EMC	Labs,	Shanghai,	China
	 Yingjun	Wu,	EMC	Labs,	Shanghai,	China
	 Chunqi	Li,	EMC	Labs,	Shanghai,	China

30	 Optimal	Cloud-Path	Selection	in	Mobile	Cloud	Offloading	Systems	Based	on	QoS	Criteria
	 Huaming	Wu,	Free	University	of	Berlin,	Berlin,	Germany
	 Qiushi	Wang,	Free	University	of	Berlin,	Berlin,	Germany
	 Katinka	Wolter,	Free	University	of	Berlin,	Berlin,	Germany

48	 Flexible	MapReduce	Workflows	for	Cloud	Data	Analytics
	 Carlos	Goncalves,	ISEL	–	Instituto	Superior	de	Engenharia	de	Lisboa,	Lisbon,	Portugal
	 Luis	Assuncao,	ISEL	–	Instituto	Superior	de	Engenharia	de	Lisboa,	Lisbon,	Portugal
	 Jose	C.	Cunha,	CITI	–	FCT,	Universidade	Nova	de	Lisboa,	Lisbon,	Portugal

65	 Scheduling	Strategies	for	Business	Process	Applications	in	Cloud	Environments
	 Kahina	Bessai,	Centre	for	Research	in	Computing	(CRI),	University	of	Paris	1	Panthéon-Sorbonne,	Paris,	France
	 Samir	Youcef,	LORIA-INRIA-UMR	7503,	University	of	Lorraine,	Nancy,	France
	 Ammar	Oulamara,	LORIA-INRIA-UMR	7503,	University	of	Lorraine,	Nancy,	France
	 Claude	Godart,	LORIA-INRIA-UMR	7503,	University	of	Lorraine,	Nancy,	France
	 Selmin	Nurcan,	Centre	for	Research	in	Computing	(CRI),	University	of	Paris	1	Panthéon-Sorbonne,	Paris,	France

79	 Parallel	Distributed	Trajectory	Pattern	Mining	Using	Hierarchical	Grid	with	MapReduce
	 Kazuhiro	Seki,	Kobe	University,	Kobe,	Japan
	 Ryota	Jinno,	Kobe	University,	Kobe,	Japan
	 Kuniaki	Uehara,	Kobe	University,	Kobe,	Japan

	97	 Maintaining	User	Control	While	Storing	and	Processing	Sensor	Data	in	the	Cloud
	 Martin	Henze,	Department	of	Communication	and	Distributed	Systems,	RWTH	Aachen	University,	Aachen,	Germany
	 René	Hummen,	Department	of	Communication	and	Distributed	Systems,	RWTH	Aachen	University,	Aachen,	Germany
	 Roman	Matzutt,	Department	of	Communication	and	Distributed	Systems,	RWTH	Aachen	University,	Aachen,	Germany
	 Daniel	Catrein,	QSC	AG,	Cologne,	Germany
	 Klaus	Wehrle,	Department	of	Communication	and	Distributed	Systems,	RWTH	Aachen	University,	Aachen,	Germany

113	 Optimizing	Communication	for	Multi-Join	Query	Processing	in	Cloud	Data	Warehouses
	 Swathi	Kurunji,	Computer	Science,	University	of	Massachusetts	Lowell,	Lowell,	MA,	USA
	 Tingjian	Ge,	Computer	Science,	University	of	Massachusetts	Lowell,	Lowell,	MA,	USA
	 Xinwen	Fu,	Computer	Science,	University	of	Massachusetts	Lowell,	Lowell,	MA,	USA
	 Benyuan	Liu,	Computer	Science,	University	of	Massachusetts	Lowell,	Lowell,	MA,	USA
	 Cindy	X.	Chen,	Computer	Science,	University	of	Massachusetts	Lowell,	Lowell,	MA,	USA

Table of Contents
October-December 2013, Vol. 5, No. 4

Copyright
The International Journal of Grid and High Performance Computing (IJGHPC) (ISSN 1938-0259; eISSN 1938-0267), Copyright © 2013 IGI Global. All
rights, including translation into other languages reserved by the publisher. No part of this journal may be reproduced or used in any form or by any means without
witten permission from the publisher, except for noncommercial, educational use including classroom teaching purposes. Product or company names used in
this journal are for identification purposes only. Inclusion of the names of the products or companies does not indicate a claim of ownership by IGI Global of the
trademark or registered trademark. The views expressed in this journal are those of the authors but not neccessarily of IGI Global.

The International Journal of Grid and High Performance Computing is indexed or listed in the following: ACM Digital Library,
Bacon’s Media Directory, Cabell’s Directories, Compendex (Elsevier Engineering Index), DBLP, GetCited, Google Scholar, INSPEC,
JournalTOCs, MediaFinder, SCOPUS, The Standard Periodical Directory, Ulrich’s Periodicals Directory

International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013 97

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
Clouds provide a platform for efficiently and flexibly aggregating, storing, and processing large amounts of
data. Eventually, sensor networks will automatically collect such data. A particular challenge regarding sensor
data in Clouds is the inherent sensitive nature of sensed information. For current Cloud platforms, the data
owner loses control over her sensor data once it enters the Cloud. This imposes a major adoption barrier
for bridging Cloud computing and sensor networks, which we address henceforth. After analyzing threats to
sensor data in Clouds, the authors propose a Cloud architecture that enables end-to-end control over sensitive
sensor data by the data owner. The authors introduce a well-defined entry point from the sensor network into
the Cloud, which enforces end-to-end data protection, applies encryption and integrity protection, and grants
data access. Additionally, the authors enforce strict isolation of services. The authors show the feasibility and
scalability of their Cloud architecture using a prototype and measurements.

Maintaining User Control
While Storing and Processing

Sensor Data in the Cloud
Martin Henze, Communication and Distributed Systems, RWTH Aachen University, Aachen,

Germany

René Hummen, Communication and Distributed Systems, RWTH Aachen University, Aachen,
Germany

Roman Matzutt, Communication and Distributed Systems, RWTH Aachen University, Aachen,
Germany

Daniel Catrein, QSC AG, Cologne, Germany

Klaus Wehrle, Communication and Distributed Systems, RWTH Aachen University, Aachen,
Germany

Keywords: Access Control, Architecture, Cloud, End-to-End Protection, Platform, Security, Sensor Network

INTRODUCTION

Continuous advances in the areas of ubiquitous
computing and sensor networks (Akyildiz et
al., 2002) blur more and more the boundaries
between the physical and the digital world. At
the same time, Cloud computing turned into

an established paradigm for outsourcing data
storage and computation resources. These two
trends, ubiquitous sensing and Cloud comput-
ing, complement each other naturally. Sensor
networks are an ideal solution to collect infor-
mation about the physical environment, but
they typically lack the resources to store and

DOI: 10.4018/ijghpc.2013100107

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

98 International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013

process collected data over long periods of time.
However, Cloud computing provides nearly
unlimited storage and computing resources
elastically. Additionally, Cloud-based services
could make use of the data from a large number
of sensor networks. How these services could
be used is illustrated by the following example:
Assume private weather stations that do not only
provide a local view on current sensor readings,
but also transmit their measurements to a fore-
cast service running in the Cloud. The Cloud
service now is able to process and aggregate
the received data and use it in a Cloud-based
weather simulation in order to generate an ac-
curate forecast for a specific region.

However, one major concern with this
approach is inherent to sensor data: it often
contains private or otherwise sensitive (meta-)
information. The weather forecast service may,
for example, require the location in addition to
the raw, insensitive temperature values. While
the data owner may be willing to share this
sensitive information with selected services,
she often does not trust the Cloud provider
or other services. Thus, she may refrain from
using Cloud-services that are based on her sen-
sor data. As previously identified for related
scenarios (Chow et al., 2009; Henze et al.,
in press; Pearson & Benameur, 2010), these
adoption barriers arise due to the loss of control
of the data owner over her data. A number of
approaches aiming at providing secure data
storage and computation in the Cloud have
been proposed. Typically, these approaches
focus on providing hard security guarantees
by using technologies such as trusted platform
modules or homomorphic encryption (Gentry,
2010; Santos et al, 2009; Wallom et al., 2011).
These approaches are, however, inadequate
for storing and processing sensitive sensor
data in the Cloud. Either they do not provide
the necessary user control over outsourced
data in the Cloud or they introduce excessive
encryption overhead, especially when applied
to comparably small sensor data (Danezis &
Livshits, 2011). Hence, we see the need for
a practically viable approach for storing and
processing sensor data in the Cloud.

This work is structured as follows: After this
introduction, we provide a detailed overview of
related work with a discussion how our propos-
als differentiate. Afterwards, we present threats
originating from various entities that arise when
outsourcing storage and processing of sensitive
sensor data to the Cloud. In order to address
these threats, we propose a security architecture
for user-controlled storage and processing of
sensor data in the cloud. Our proposed security
architecture provides a Platform-as-a-Service
(PaaS) for the execution of services that operate
on sensor data in accordance with the necessary
security requirements. For this purpose we of-
fer i) early protection of sensor data starting in
the sensor network, ii) user-controlled access
granting for selected services, and iii) strict
service isolation within the Cloud platform.
With these measures we enable the data owner
to stay in control over who may access her data
and, thus, make outsourcing sensor data to the
Cloud viable.

RELATED WORK

We structure our discussion of related work
into the following three research directions: i)
architectures involving a trusted third-party,
ii) secure operations on outsourced data, and
iii) other related approaches to secure Cloud
computing.

In a wide range of scenarios, architectures
utilizing a trusted third-party similar to our
Trust Point architecture have been proposed.
However, these approaches typically restrict
themselves to securing the transport of data
and do not consider the object security that is
crucial for our scenario. The Federal Office
for Information Security in Germany (2011)
specified a trusted gateway in order to guarantee
privacy in intelligent energy networks. Our
security architecture shows some similarities to
this approach. However, our architecture allows
a much more fine-granular access control for
data. There are also a number of architectures
involving a trusted third-party that have been
proposed in the context of Cloud comput-

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013 99

ing. Kamara and Lauter (2010) propose an
architecture similar to ours with respect to a
trusted gateway encrypting outbound data and
managing access policies. However, they do
not consider the secure processing of data in
the Cloud. Additionally, they require request-
ing access tokens from the gateway in order to
access data. Hence, in contrast to our approach,
data stored in the Cloud is only available when
the gateway is reachable. The Twin Clouds
architecture by Bugiel et al. (2011) utilizes
Garbled Circuits for encrypting both data and
programs in a trusted environment before pass-
ing them to the untrusted public Cloud. After
this demanding setup phase, which has to be
performed per data item, computations can be
executed in the untrusted Cloud. However,
the encrypted programs are limited to simple
operations and require re-encryption after each
execution. Pearson et al. (2011) introduce a
Cloud design similar to ours that focuses on
fine-grained access control for outsourced
data. While their approach focuses on sticky
policies that have to be enforced by a trusted
third-party, our solution introduces the Trust
Point and its binding with the Cloud, suggests
a flexible design for object security on sensor
data, and incorporates isolation mechanisms at
the service-level in the Cloud.

Secure operations on outsourced data can
be distinguished into secure data indexing and
secure computations. The area of secure data
indexing focuses on accessing encrypted data
in a structured way in order to allow, e.g., range
queries or keyword searches (Boneh & Waters,
2007; Kamara & Lauter, 2011; Popa et al., 2011).
In contrast, the field of secure computations
deals with computations directly on encrypted
data. One prominent example for this is (fully)
homomorphic encryption (Gentry, 2010; Popa et
al., 2011). However, especially when consider-
ing fully homomorphic encryption, high ineffi-
ciencies regarding computational overhead and
key sizes can be observed (Danezis & Livshits,
2011). As we consider indexing and processing
of encrypted data promising, our flexible design
of data object security mechanisms allows
incorporating these approaches.

There is also a number of other related
approaches to secure Cloud computing. These
either build on the idea of using trusted hardware
components in Cloud environments (Itani et
al., 2009; Santos et al., 2009) or of performing
data processing outside the Cloud. Approaches
utililizing trusted hardware components require
extensive support by the IaaS layer, whereas
the requirements of our architecture to the IaaS
can be implemented at the management level.
Additionally, binding trusted components to
specific hardware instances makes migrating
virtual instances across multiple hardware
platforms a challenging task (Wallom et al.,
2011). Performing data processing locally re-
duces the Cloud to a storage device (Bowers et
al., 2009; Kamara & Lauter, 2010). In contrast
to our approach, these solutions cannot profit
from the elastic computational resources that
the Cloud offers.

SCENARIO AND
SECURITY CONCERNS

Sensor networks are typically dedicated and
isolated networks, which collect information
about their environment. A sink node that may
either pre-process the raw data on-site or forward
it directly to its actual consumer commonly
collects the sensed raw data. In either case, the
recipient of the collected information is known
at the data sink. Hence, the collected data only
leaves the network domain of the data owner on
distinct and controlled paths. However, when the
data owner outsources storage and processing
of sensor data to the Cloud, the paths that this
data take become ambiguous as multiple entities
contribute to the overall service provisioning.
More precisely, data sent by the sensor gateway
through the Internet towards the Cloud traverses
the network backbone infrastructure as well as
the IaaS and PaaS layers before being processed
by a service (see Figure 1). As a result of this
layered architecture and the inherent use of
multi-tenancy, potentially sensitive sensor
data traverses an unknown set of systems. To
overcome adoption barriers arising from this

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

100 International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013

uncertainty, a trusted Cloud architecture must
prevent access to information by the Cloud
provider and third parties, unless the data owner
explicitly agrees to share it.

An extensive study of the high-level threats
for outsourced data in the Cloud and the build-
ing blocks of a trusted Cloud has already been
performed (Hummen et al., 2012). This study
identified data confidentiality and integrity,
data accountability, service availability, and
assurance as the main threats, which have to
be tackled using legal agreements, processes,
and technology. In this work, we focus our
discussion to specific threats when outsourcing
sensor data to the Cloud. To this end, we first
introduce the entities involved in the storage
and processing of sensor data in the Cloud and
present assumptions regarding these entities. We
then identify specific threats that originate from
these entities. Based on these threats, we derive
security goals our architecture has to fulfill.

Entities

Sensor data that is owned by the data owner and
outsourced to the Cloud is potentially exposed
to different entities (see Figure 1). The cloud
provider operates the Cloud and has the pos-
sibility to monitor any aspect of the Cloud at
any time. Additionally, any service provider,
which operates its service on top of the platform
offered by the cloud provider, may try to ac-

cess any sensor data via the service. Finally, all
sensor data generated by the sensor networks
are transmitted to the Cloud via the Internet.
The same holds for communication between
the Cloud and end users accessing the data.
Hence, an external attacker might eavesdrop on
connections between the Cloud and any other
entity, with no other purpose but to obtain in-
formation or manipulate data. Before discussing
threats regarding these entities in more detail,
we first present the high-level assumptions and
adversary models for our scenario and entities.

Assumptions and
Adversary Models

We assume that the Cloud provider obeys
to an adversary model similar to that of an
honest-but-curious adversary (Kissner & Song,
2005). That means, it will operate technology,
services, and interfaces as contractually agreed
and will not actively spy into running services.
However, it might try to learn as much as pos-
sible about the processed information and it
might not guarantee long-term confidentiality
of stored information. The service providers,
on the contrary, are generally considered less
trustworthy. This is due to the fact that the data
owner cannot control which services are offered
by the Cloud and those services may actively
try to gain unconstrained access to sensor data
that is not meant for disclosure to them. Some

Figure 1. Different entities are involved in the general scenario of outsourcing storage and
processing of sensor data to the Cloud

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013 101

level of trust in services can be gained after an
audit of the service through the Cloud provider
or a trusted third party. This is similar to the
approach taken by today’s app stores. Outside
entities must be seen as malicious adversar-
ies (Kissner & Song, 2005) that may perform
arbitrary actions in order to break into com-
munication flows.

Threats

We now discuss potential threats for sensor
data in the Cloud, originating from the different
entities with their adversary models. First, we
investigate the cloud provider’s possibilities to
obtain sensor data without approval. Secondly,
we have a look at attacks a service provider
could launch. Finally, we discuss attacks that
an external attacker could launch.

Threats from Cloud provider: In the fol-
lowing we differentiate three ways in which the
honest-but-curious Cloud provider could try to
access sensor data. Most intuitively, the Cloud
provider can inspect the cloud storage that is
used to persistently store sensor data in order
to spy on the data. The Cloud provider is able
to monitor any aspect of the Cloud at any time.
Hence, it has the ability to inspect the Cloud’s
storage at any time. Another possibility for the
Cloud provider to get unintentional access to
sensitive data is by eavesdropping, e.g., when
collecting data (e.g., network statistics) on
internal communication to satisfy its curios-
ity. This holds not only for the protected data
but also for other sensitive information, i.e.,
information needed to decrypt protected data
and computation results. Finally, the Cloud
provider could (unintentionally) spy on ser-
vice information that leaked out of a run-time
context or that survived the end of the run-time
context of a service. This may be data left in
memory or in temporary files on disks after a
service released the respective resources. Note
that the honest-but-curious adversary assumed
here does explicitly not monitor the private run-
time memory of a service in order to obtain any
of the information mentioned above. We also
assume that the access to physical resources

of the Cloud or virtual resources allocated by
services is sufficiently restricted to make the
direct investigation of those resources infeasible
for others than the Cloud provider (Lombardi
& Di Pietro, 2011).

Threats from service provider: We assume
that service providers potentially are more
aggressive attackers than the cloud provider.
Therefore, we explicitly consider malicious
service providers that actively try to access
sensor data that they are not authorized to
process. There are essentially two threats
originating from malicious services: access
escalation and service identification spoofing.
We first discuss access escalation. To protect
the Cloud, the Cloud provider has to manage
the permissions of its customers in the Cloud.
Services can attempt to bypass their access
restrictions in various ways. A service could try
to obtain additional permissions by exploiting
errors in the implementation of the Cloud’s
permission management. Furthermore, a service
could launch side-channel attacks as described
by Ristenpart et al. (2009) and Zhang et al.
(2012) in order to obtain information about
other services that are instanced within another
virtual machine on the same physical device
in the Cloud. Additionally, the service can try
to break out of its virtualization environment
entirely, gaining access to the physical device
the service is instanced on. Using the second
threat, service identification spoofing, a service
impersonates another service and thus obtains
unauthorized access to sensor data.

Threats from an external attacker: In our
scenario, the Cloud is publicly available via
the Internet. Hence, all entities in our scenario
are subject to the commonly known security
threats the Internet has yielded over time. In
this section, we describe attacks a malicious
external attacker could launch against the Cloud
infrastructure used to realize the service. These
are eavesdropping on connections, imperson-
ation of the Cloud, as well as data and service
forgery. At first, we discuss eavesdropping
on connections to the Cloud. Whenever data
are communicated between a sensor network
or a user and the Cloud, messages have to be

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

102 International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013

sent via the Internet. An external attacker can
eavesdrop on the established communication
channel in order to obtain confidential informa-
tion. The next threat arises from the external
attacker trying to impersonate the Cloud. This
way he would receive all the information any
entity sends to the Cloud. For data forgery, a
malicious attacker could try to manipulate the
sensor data outsourced to the Cloud. This is not
only limited to the sensor data being stored but
also applies to the results of a service which
operates on sensor data. A similar threat is
service forgery. An external attacker can appear
as man-in-the-middle when a service provider
is about to deploy its service to the Cloud. His
malicious service, which then again could at-
tempt any attack described earlier, would more
likely be accepted and authorized by data owner
than a genuinely deployed malicious service.

Security Goals

With respect to outsourcing storage and pro-
cessing of sensor data to the Cloud, technol-
ogy needs to provide the means to protect the
privacy and security of sensitive sensor data in
a multi-tenant system outside the trust domain
of the data owner. Our main security goal is the
control of the data owner over her sensor data
when outsourcing storage and processing to
the Cloud. To enable this control, our security
architecture primarily has to meet the following
high-level requirements.

• Authentication: All entities must be able
to verify the identity of all other entities it
interacts with.

• Secure Transport and Storage: All data
must be secured properly during transport
and storage.

• Data Confidentiality and Integrity: The
data owner must be able to control who can
access her data in- and outside the Cloud
platform. Additionally, the data owner and
Cloud services must be able to verify that
data has not been manipulated.

• Trusted Services and Service Execution:
The data owner must be sure which service

operates on her data and what the service
does with her data.

Based on these security goals, we con-
tinue with the presentation of our security
architecture.

SECURITY ARCHITECTURE

In order to address the presented threats and
meet the stated security goals, we developed
a security architecture for the user-controlled
storage and processing of sensor data in the
Cloud. As stated earlier, the main goal of our
work is to establish control of the data owner
over her sensor data when outsourcing storage
and processing to the Cloud. To achieve this
goal, we identified four components, which we
will discuss in the following. Before we dive
into details, we first give a high-level overview
of these components. We start our presentation
with the bridging of the sensor network and
the Cloud. This includes securing the transport
between the sensor network gateway and the
Cloud entry point. As transport security is
terminated as soon as the Cloud receives the
sensor data, we additionally add object secu-
rity. This allows end-to-end security from the
sensor network to an authorized Cloud service
as well as during storage. Figure 2 illustrates
the different protection scopes of transport and
object security. In order to grant authorized
services access to data, the data owner has to
provide the keys used for the object security to
the service. We discuss possible methods for
this key management task in a Cloud setting.
Finally, multi-layer tenancy separation allows
protecting data not only during transport and
storage, but also during processing.

Bridging the Sensor Network
and Cloud Domains

All data leave the trusted sensor work at a com-
mon point of control: the gateway that connects
the sensor network with the outside world (e.g.,
the Internet). Hence, we realize our control and
security mechanisms at this border point of the

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013 103

sensor network. Specifically, we introduce the
Trust Point, a new logical entity on the gateway.
It acts as a bridge between the trust domain of
the sensor network and the Cloud and performs
the following three tasks. First, on behalf of the
data owner, it forwards the sensor data to the
Cloud platform. Second, during the transmis-
sion to the Cloud, it protects the confidentiality
and integrity of the forwarded data. Third, it
applies per-data item security measures in or-
der to establish control of the data owner over
her data even after the transport protection is
terminated in the Cloud. We discuss these tasks
in the following sections.

The Cloud platform provider offers storage
and processing resources to the data owner.
To enable accountability (and billing), we
require that data owners have to register with
the Cloud platform. In order to allow the Trust
Point to store data in the Cloud on behalf of the
data owner, we have to bind its identity to the
data owner’s account in the Cloud. We refrain
from using the data owner’s credentials (e.g.,
username and password) on the Trust Point for
security reasons. Instead, we identify the Trust
Point using public key cryptography. We use
the OAuth protocol (Hammer-Lahav, 2010) to
bind the data owner’s credentials to the public
key of the Trust Point. In the OAuth model, the
data owner takes the role of the OAuth resource
owner, whereas the Trust Point is the OAuth
client and the Cloud PaaS represents the OAuth
server (see Figure 3). To perform the binding
process, the data owner first connects to the Trust
Point using a TLS secured connection. The Trust
Point then redirects her to the Cloud platform.
So far, the Trust Point is unknown to the Cloud

platform and there is no identity provided which
could be authorized for future access. In order
to provide such an identity, the Trust Point adds
the fingerprint of its public key (i.e., its hash
digest) to the redirect request. After the data
owner authorized the Trust Point at the Cloud
platform, the Cloud platform is able to create
a mapping from the data owner’s username to
the public key fingerprint of the Trust Point.

As soon as the authorization process has
been completed, the platform redirects the data
owner back to the Trust Point. Triggered by this
second redirect, the Trust Point is now able to
establish a secure connection with the Cloud
platform. In order to identify itself, it uses its
public key for the mutual authentication vari-
ant of the TLS handshake. As the Cloud now
knows the Trust Point’s public key, correct
binding and authorization of the Trust Point
can now be verified. Now, the Cloud platform
can safely accept sensor data transmitted by
this Trust Point.

Object Security from
Trust Point to Service

As motivated earlier, transport security is ter-
minated when the Cloud receives the sensor
data (see Figure 2). At this point, the transport
security mechanisms are stripped from the
sensor data. Without further protection plain
data would reside unprotected within the Cloud
platform, which leads to several threats as
discussed earlier.

To achieve end-to-end security from the
Trust Point to an authorized service and during
storage, the Trust Point adds additional object

Figure 2. Transport security is terminated as soon as data reaches the Cloud entry point. To
protect the path between Cloud entry point and service, we additionally employ object security.

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

104 International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013

security mechanisms to the sensor data before
transmitting them securely to the Cloud. The
plain information of sensor data can now neither
be accessed nor modified undetectably by an
unauthorized third party. Furthermore, the ad-
ditional integrity protection cryptographically
guarantees the accountability of sensor data to
a specific data owner; even after the transport
security has been terminated. This approach to
object security is comparable to Digital Rights
Management (DRM) (Becker et al., 2003) when
treating the Cloud services as end-user devices
in the DRM case. However, the main difference
to our solution is that we do not require enforce-
ment of data access control on the service side.

A data item generated by a single sensor
reading typically consists of multiple data
fields, i.e., raw measurement values and meta
data such as location and time. The type of data
fields and meta data depends on the type of the
sensor. A sensor attached to a windmill will most
likely output data that is structured completely
different compared to those of a sensor measur-
ing vital signs in a hospital. In order to cope
with the variety of different sensor data types,
we propose to use JavaScript Object Notation
(JSON) (Crockford, 2006) for representing and
serializing sensor data. We intentionally do
not restrict the format of these JSON objects.
However, we assume the existence of certain
fields, which are necessary for indexing the
data, such as identifiers for sensor node and

gateway, timestamp, and sensor data type. These
different data fields (raw measurement values
and meta data) can demand for different levels
of protection. For example, the raw temperature
readings of a private outdoor weather station
may not require confidentiality protection while
sensitive meta-data such as location information
does. In order to address this fact, we support
different protection schemes for the different
data fields of a data item. We note that both,
Trust Point and Cloud service need a formal
description of a sensor data type (identified by
the data type field). In the context of JSON, this
can be achieved using JSON Schema (Galiegue
et al., 2013). We propose to enrich these schema
definitions by instructions on how a specific
data field should be encrypted. For each data
field it is thus possible to specify if and with
which encryption algorithm this field has to be
encrypted. Utilizing JSON has the nice benefit
that the communication of encryption param-
eters such as an identifier for used encryption
key or the initialization vector can easily be
represented using JSON Web Encryption (JWE)
(Jones et al., 2013). We thus instruct the Trust
Point to replace the plain value with a JWE
object containing the cipher text and encryp-
tion parameters. To further realize fine-grained
access control, individual protection keys can
be used for different time spans (e.g., hours,
days, weeks).

Figure 3. In order to set up a secure and mutually authenticated connection between the Trust
Point and the Cloud, the data owner triggers the OAuth-based binding procedure

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013 105

The straightforward solution for confiden-
tiality protection is symmetric key encryption,
e.g., AES. Our security design also enables
the use of order-preserving and deterministic
encryption (Boneh & Waters, 2007; Popa et al.,
2011) in order to allow search and sort operations
on stored (encrypted) data. Similarly, efficient
methods for homomorphic encryption (Popa et
al., 2011) for selected operations on encrypted
data (e.g., sum or average) can be used.

The integrity protection of our architecture
is based on asymmetric key cryptography. To
guarantee integrity of each data item, the Trust
Point signs it with a private key. Thus, the integ-
rity protection covers the complete data item.

Service Assurance and
Data Access Granting

To access data items and individual data fields,
services need to have the keys used to protect
them. This access has to be authorized by the
data owner. Data owners have to be empowered
to perform an informed decision regarding the
services to authorize. Hence, Cloud services
come with a service description (e.g., in a Cloud
service market-place). This description contains
high-level information about the purpose of
the service and how the service uses the data
provided. Conformance of the service imple-
mentation to the service description must be
assured, e.g., via an audit by the Cloud provider
or a trusted third party, similarly to practices
applied in today’s app stores. The conformance
is expressed via a cryptographic signature issued
by the auditor and signing the service descrip-
tion and the service’s public key. A data owner
agreeing with the service description provides
the encryption keys used for the protection of
the data fields to the service after verifying the
signature. This is achieved by instructing the
Trust Point to encrypt the respective encryp-
tion keys with the public key of the service
and to transmit this secured information to
the encryption key store located in the Cloud.
The key store’s purpose is twofold. It offloads
the Trust Point from the burden of frequent
and repeated key requests causing expensive

public key operations or the need to store a
large number of keys. Additionally, it relaxes
the requirement that the Trust Point needs to
be continuously online. Connectivity to the
Trust Point is only necessary to grant access
to new tuples of key and service. Authorized
services retrieve the encryption keys from the
key store and decrypt them using their private
keys. Similarly, for all authorized services, the
Trust Point pushes new keys to the key store
whenever the encryption keys change.

Multi-Layer Tenancy Separation

From the Trust Point on, tenant data is secured
and securely separated during transport and
storage by transport and object encryption.
However, when processing data in services,
sensitive information (e.g., decryption keys and
the data owner’s decrypted sensor data) has to be
stored and processed in an unencrypted manner
in the run-time context of the service (van Dijk
& Juels, 2010). Thus, our platform introduces
secure Service Execution Environments (SEE)
as containers for service execution, as depicted
in Figure 4. The SEEs are the only place where
data items are unencrypted inside the Cloud
platform. SEEs isolate different tenants from
each other and services are not able to leave
their SEE or interfere with services in other
SEEs. The SEE design has to guarantee tenant
separation while scaling the number of services
in a wide range. Either, individual services for a
few thousand tenants, i.e., data owners, may be
served from separate SEEs on the same physi-
cal machine. Or, the joint computing power of
many physical machines may be required for
services operating on huge amounts of data
from various data owners.

Tenant separation relying on virtualization
at the IaaS layer does not achieve this scalability.
Even when using aggressive memory sharing
techniques, the total number of VMs on the
same physical hardware is limited by memory
restrictions to a few hundreds (Martignoni et
al., 2012). Hence, using a separate VM as SEE
for each tenant and service does not support
scenarios with several thousand instances.

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

106 International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013

Consequently, we implement the SEEs on top
of an operating system, which is executed on
Instances (typically VMs) offered by an IaaS
provider. Note that tenant separation by the
computing part of the IaaS is still required to
isolate the PaaS provider from other IaaS users.
This can be realized by a trusted hypervisor or
simply by a process that ensures that only VMs
of the PaaS provider are executed on the same
physical hardware. Adherence of the IaaS pro-
vider to this requirement needs to be enforced,
e.g., via legal agreements and regular audits.
As data in transit and storage is protected by
the object security mechanism, there are no
specific separation requirements for the storage
and networking subsystems at the IaaS layer.

When restricting to Java as a language for
service development on the platform (which
is not really desirable), an option would be
to use the Java VM (JVM) as SEE. However,
neither typical JVMs nor Java EE applica-
tion servers guarantee proper separation of
executed applications and respective tenants.
Security and isolation weaknesses of JVMs
were investigated, e.g., within the context of
OSGi (Parrend & Frenot, 2009) and research
projects like I-JVM (Geoffray et al., 2009) are
addressing them. Even though, these might be
promising approaches for the future, we believe
that currently SEE implementation and tenant
separation closer to the kernel and the operating
system is favorable. Hence, we propose here to
use OS level containers such as BSD jails or

Linux control groups as SEEs. The containers
guarantee access isolation to and oversee usage
of system resources such as CPU, memory, and
I/O. Another option for further investigation and
research is to implement sandboxes via LLVM,
e.g., by extending the approach on software
fault isolation described by Sehr et al. (2010).

In any case, existing containers need to be
extended to enforce the usage of object security
mechanisms by services. A dedicated object I/O
API for services is defined “at the boundary” of
the SEE while any other network and storage
I/O can be forbidden. Incoming and outgoing
objects are automatically decrypted or encrypted
by this API, respectively. Cryptographic opera-
tions and corresponding key handling happen
automatically in the run-time context of the
actual service and tenant. This architecture
enforces object encryption and supports the
development of secure services as it relieves
the programmer from the burden of manual
key and encryption handling.

EVALUATION

We implemented a basic prototype, consisting of
a Trust Point, Cloud platform, and Cloud service,
in order to estimate the performance and prove
the feasibility of our design. We us a Raspberry
Pi Model B with 256 MiB of RAM, a clock
speed of 700 MHz, and Raspbian (a Debian-
based Linux distribution for the Raspberry Pi)

Figure 4. Multi-layer tenant separation is achieved using Virtual Machines (VMs) at the IaaS
layer (solid lines) and Secure Execution Environments (SEEs) at the PaaS layer (dashed line)

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013 107

as operating system as hardware platform for the
prototype of our Trust Point. In order to allow
others to verify our experimentation results, we
use Amazon Web Services (2013) 1st generation
EC2 64-bit instances of type large (M1.large)
and Ubuntu 12.04 as the operating system for
our performance measurements in the Cloud.
We are aware that Amazon EC2 does currently
not guarantee the level of user isolation we
desire for our architecture. Thus, we have a
second prototype running on OpenStack where
the desired level of isolation can be achieved
by configuring respective policies for the filter
scheduler. Our Trust Point-based architecture
involves performance trade-offs with respect
to computation and storage resources. Addi-
tionally, the multi-layer tenancy separation at
the service level requires additional memory
resources compared to pure IaaS virtualization.
In the remainder of this section we quantify
and analyze these overheads.

Cryptographic Primitives

We use cryptographic primitives with at least
112-bit security for symmetric operations in
order to provide data security up to the year
2030 according to NIST (Barker et al., 2012).
The choice of cryptographic primitives was
further guided by reducing the computational
burden on the Trust Point. Constantly, the
Trust Point has to perform three different
types of cryptographic operations: i) per-data
field encryption, ii) per-data item signing, and
iii) per-authorized service encryption of data
encryption keys. For data field encryption, we
use AES with 128 bit keys in CBC mode. As
the AES operations only lead to a marginal
overhead, we limit or analysis to sensor data
containing only a single data field, unless speci-
fied otherwise explicitly. For data item signing,
we use the ECDSA scheme with NIST curve
P-224. Finally, for encrypting data encryption
keys for authorized services we use RSA with
2048 bit keys. This choice was mainly guided by
the advantageous performance asymmetry for
public-key operations, which lowers the burden

on the Trust Point. For future revisions of our
architecture we may replace RSA by elliptic
curve encryption mechanisms such as ECIES.

Performance Overhead

There are extensive studies on the performance
overhead of the transport security mechanisms
employed by our architecture (Coarfa et al.,
2006). Thus, we focus on evaluating our object
security mechanisms. These introduce com-
putational overhead for both Trust Point and
Cloud. For the Trust Point, this overhead results
from the per-data field encryption, the per-data
item integrity protection, and the encryption of
keys for authorized services. Correspondingly,
services have to decrypt encrypted data fields
before processing them and need to verify the
integrity of data. In order to allow fine-grained
data access control, the Trust Point periodically
changes and distributes encryption keys. After
each of these key changes, services have to
decrypt the encryption keys with their private
key. We measure this performance overhead
using our OpenSSL-based prototype.

For each data point, we conducted 40
measurements. We show the mean processing
time for one data item with one data field as
well as the corresponding standard deviation.
The left part of Figure 5 shows the results for
the processing time of a data item with one
authorized service and increasing key change
intervals. The results show that even for a key
change interval of 1 second, our low-end Trust
Point is able to process more than 80 data items
per second. For a key change interval of only 10
seconds, this value increases to 200 data items
per second. The figure also shows that for key
change intervals larger than 10 seconds, the
integrity protection accounts for more than 75
percent of the processing time. Thus, further
increasing the key change interval reduces
the per-data item processing time on the Trust
Point only marginally. The right part of Figure
5 shows the results for processing one data item
with a key change interval of 1 second for an
increasing number of authorized services. For

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

108 International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013

each additional service, the Trust Point has to
encrypt the encryption key on every key change.
The results show that even with a key change
interval of 1 second and ten authorized services,
the Trust Point is able to process more than 50
data items per second. For an increasing number
of authorized services, the data key encryption
becomes the main bottleneck. To bring these
numbers into perspective, assume a per-sensor
sampling rate of one measurement per second
and ten authorized services per sensor node.
Even in this exaggerated scenario, the low-end
Trust Point is able to protect sensor data for over
50 nodes. In order to support higher sampling
rates or larger network sizes, the hardware
of the Trust Point can easily be scaled up or
hardware support for cryptographic algorithms
can be added. Thus, throughputs that are one to
two orders of magnitude higher can easily be
achieved. The main limiting factor for protect-
ing sensor data at the Trust Point are the public
key operations for the data integrity mechanism
and key distribution. Fortunately, modern multi-
core SoCs allow to perform these calculations
at higher core speeds and in parallel compared
to the single core architecture of the Raspberry
Pi. Our evaluation shows that the number of
data fields per data item only has a marginal
influence on the maximum throughput of the
Trust Point. The symmetric encryption used to
encrypt data fields can be computed efficiently

in 0.004 ms on the Raspberry Pi. Hence, our
architecture smoothly scales with the number
of data fields.

Considering Cloud services, we are in-
terested in the number of data items a service
can decrypt and verify in one second. The left
part of Figure 6 depicts the mean processing
time for decrypting and verifying one data item
for increasing key change intervals. Even for
a key change interval of 1 second, the service
is able do decrypt 500 data items per second.
For a key change interval of 20 seconds, the
throughput increases to nearly 1,000 data
items per second. Again, the integrity protec-
tion leads to a constant performance overhead.
In order to reduce this overhead, we propose
two approaches, probabilistic verification and
verification-as-a-service. If a service trusts the
Cloud provider to a certain extend, the service
can use probabilistic verification to only verify
the integrity of a random sample and thus dra-
matically increase throughput. First results show
that throughput can be increased up to 9,900
data items per second for a verification prob-
ability of 10 percent and even up to 96,300 data
items per second for a verification probability
of 1 percent (Hummen et al., 2012). However,
if deterministic verification is required (i.e.,
when using an untrusted Cloud provider), the
data owner may use verification-as-a-service
which can be offered by dedicated services that

Figure 5. The mean time for processing one data item depends on the key change interval (left,
one authorized service) and the number of authorized services (right, key change interval 1 s)

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013 109

continuously verify the integrity of all stored
data (Wang et al., 2011). Overall, the results
of the performance overhead evaluation show
that our security design scales well for our
intended scenario.

Storage Overhead

We identified two kinds of storage overhead
that need to be evaluated. The first type of over-
head follows directly from the object security
mechanisms, i.e., data encryption and integrity
protection. The second type results from the
storage of the encrypted keys in the Cloud.

We consider a simple JSON-encoded sen-
sor data item with four (unencrypted) meta data
fields and an increasing number of measured
values that have to be encrypted. The right part
of Figure 6 depicts this storage overhead of our
proposed object security mechanisms for an
increasing number of (encrypted) data fields.
The constant overhead for the JSON-encoded
meta data accounts for 87 bytes and each mea-
sured value adds additional 27 bytes (assuming
that data fields fit into a single 16 byte block).
For each data field, the overhead consists of a
16-byte initialization vector and an additional
overhead of 31 bytes for the JSON-encoded
JWE information. Additionally, the integrity
protection checksum accounts for a constant
overhead of 64 bytes plus 7 bytes for its JSON
encoding. Consequently, the cryptographic stor-

age overhead grows linearly with the number of
data fields in each data item. For a reasonable
amount of data fields, this overhead is well
manageable with the elastic storage resources
offered by today’s Cloud solutions.

For each service that is authorized to access
a data item, the Cloud stores the encryption keys
of protected data items in its dedicated key store.
Thus, the overhead for key storage in the Cloud
strongly depends on the key change interval, the
number of connected sensors, and the number
services authorized to access a sensor’s data.
Table 1 shows the calculated storage overhead
per sensor and data field for varying key change
intervals and number of services for one month
of sensor data (assuming a sample rate of once
per second). For a reasonable key change in-
terval, the key storage overhead approaches
practical sizes, e.g., 70 MB per month at a per
minute granularity for each authorized service.
Additionally, the data owner may delete or ag-
gregate old data in order to decrease the total
storage overhead in the Cloud. In conclusion,
the storage overhead imposed by the security
architecture is well manageable using the elastic
storage capabilities of the Cloud.

SEE Memory Overhead

To evaluate the memory overhead imposed by
the SEEs for service isolation, we developed
an early SEE prototype based on Linux Secure

Figure 6. The overhead consists of processing sensor data in a service (left, varying key change
intervals) and storing encrypted sensor data (right, increasing number of data fields)

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

110 International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013

Containers (LXC). Inside the LXC container,
an OpenJDK JVM executed a minimal Java test
service creating some I/O load every few sec-
onds. Each service was executed in its own LXC
container, which guaranteed secure isolation of
the processes (i.e., the JVMs) and which allowed
to define quotas for processing, memory, and
I/O usage. The memory consumed by a single
SEE instance and the test service amounted to
roughly 7 MiB. Consequently, we were able to
launch more than 1000 SEEs in parallel on one
EC2 large instance with 7.5 GiB of RAM. We
did also not observe any issues with the kernel
or scheduler due to the high number of contain-
ers, i.e., all services were able to perform their
I/O operations as desired. Today’s IaaS Clouds
can easily provide instances with more than 7.5
GiB of RAM. For example, Amazon’s High
Memory Cluster Eight Extra Large-Instance
comes with 244 GiB of RAM (Amazon Web
Services, 2013), which equates to more than
32,000 SEEs each executing a different service
at the desired level of separation on a single
physical machine.

CONCLUSION

Multiple, possibly unknown or untrusted, stake-
holders are involved when outsourcing storage
and processing of sensor data to the Cloud. In
this paper, we discussed threats originating
from these stakeholders. We counter these
threats with a security architecture that enables
the data owner to stay in control over her data.
For this purpose, we introduce a Trust Point as

a new logical entity. It is located at the sensor
network’s border and acts as a bridge between
the trust domains of the sensor network and
the Cloud. Using the Trust Point, we i) imple-
ment transport security mechanisms for secure
communication with the Cloud, ii) apply object
security mechanisms to sensor data sent to the
Cloud, and iii) perform key management in order
to authorize services. Additionally, we suggest
using isolation mechanisms for services, which
mitigates the leakage of sensitive information
from the run-time contexts of services. Our
evaluation validates an adequate performance
of our security architecture for the intended sce-
nario and shows that the introduced storage and
memory overheads can be handled effectively.
Thus, user-controlled storage and processing of
sensor data in the Cloud is a promising exten-
sion of today’s Cloud offers.

ACKNOWLEDGMENT

The authors would like to thank all partners
of the SensorCloud consortium for inspiring
discussions on the concepts described in this
paper. The SensorCloud project is funded by
the German Federal Ministry of Economics and
Technology under the project funding reference
number 01MD11049. The responsibility for the
content of this publication lies with the authors.

This is an extended and completely rewrit-
ten paper based on the work A Cloud Design
for User-controlled Storage and Processing
of Sensor Data presented at IEEE CloudCom
2012 (Hummen et al., 2012).

Table 1. Key storage overhead with respect to key change interval and authorized services

Key Change Interval

1 Second 1 Minute 1 Hour 1 Day 1 Week 1 Month

Services 1 4.33GB 0.07GB 1.23MB 0.05MB 7.50KB 1.75KB

5 21.63GB 0.36GB 6.15MB 0.26MB 37.50KB 8.75KB

10 43.26GB 0.72GB 12.30MB 0.51MB 75.00KB 17.50KB

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013 111

REFERENCES

Akyildiz, I., Su, W., Sankarasubramaniam, Y., &
Cayirci, E. (2002). A survey on sensor networks.
IEEE Communications Magazine, 40(8), 102–114.
doi:10.1109/MCOM.2002.1024422

Amazon Web Services. (2013). Amazon EC2 instance
types. Retrieved April 10, 2013, from http://aws.
amazon.com/en/ec2/instance-types/

Barker, E., Barker, W., Burr, W., Polk, W., & Smid
M. (2012). Recommendation for key management
– Part 1: General (Revision 3). National Institute
of Standards and Technology, NIST Special Pub-
lication 800-57.

Becker, E., Buhse, W., Günnewig, D., & Rump, N.
(Eds.). (2003). Digital rights management. Springer.
doi:10.1007/b12637

Boneh, D., & Waters, B. (2007). Conjunctive, subset,
and range queries on encrypted data. In Proceedings
4th Theory of Cryptography Conference (TCC 2007).

Bugiel, S., Nürnberger, S., Sadeghi, A.-R., & Sch-
neider, T. (2011). Twin clouds: Secure cloud com-
puting with low latency. In Proceedings 12th Joint
IFIP TC6 and TC11 Conference Communications
and Multimedia Security (CMS 2011).

Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon,
J., Masuoka, R., & Molina, J. (2009). Controlling
data in the cloud: Outsourcing computation without
outsourcing control. In Proceedings of the 2009
ACM Workshop on Cloud Computing Security
(CCSW 2009).

Coarfa, C., Druschel, P., & Wallach, D. S. (2006).
Performance analysis of TLS web servers. [TOCS].
ACM Transactions on Computer Systems, 24(1),
39–69. doi:10.1145/1124153.1124155

Crockford, D. (2006). The application/json media
type for JavaScript object notation (JSON). Internet
Engineering Taskforce RFC 4627. Informational.

Danezis, G., & Livshits, B. (2011). Towards ensuring
client-side computational integrity. In Proceedings
of the 3rd ACM Workshop on Cloud Computing
Security (CCSW 2011).

Federal Office for Information Security. (2011).
Protection profile for the gateway of a smart metering
system. Germany, v01.01.01(final draft).

Galiegue, F., Zyp, K., & Court, G. (2013). JSON
Schema: Core definitions and terminology. Internet
Engineering Taskforce Internet-Draft draft-zyp-json-
schema-04 (work in progess).

Gentry, C. (2010). Computing arbitrary functions of
encrypted data. Communications of the ACM, 53(3),
97–105. doi:10.1145/1666420.1666444

Geoffray, N., Thomas, G., Muller, G., Parrend, P.,
Frénot, S., & Folliot, B. (2009) I-JVM: A Java vir-
tual machine for component isolation in OSGi. In
Proceedings of the 2009 IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN 2009).

Hammer-Lahav, E. (2010). The OAuth 1.0 pro-
tocol. Internet engineering taskforce RFC 5849.
Informational.

Henze, M., Hummen, R., & Wehrle, K. (in press). The
cloud needs cross-layer data handling annotations.
In Proceedings of the 4th International Workshop on
Data Usage Management (DUMA 2013).

Hummen, R., Henze, M., Catrein, D., & Wehrle, K.
(2012). A cloud design for user-controlled storage and
processing of sensor data. In Proceedings of the 4th
IEEE International Conference on Cloud Computing
Technology and Science (CloudCom 2012).

Itani, W., Kayssi, A., & Chehab, A. (2009). Privacy as
a service: Privacy-aware data storage and processing
in cloud computing architectures. In Proceedings
8th IEEE International Symposium on Dependable,
Autonomic and Secure Computing (DASC 2009).

Jones, M., Rescorla, E., & Hildebrand, J. (2012).
JSON web encryption (JWE). Internet engineering
taskforce internet-draft draft-ietf-jose-json-web-
encryption-08 (work in progess).

Kamara, S., & Lauter, K. (2010). Cryptographic
cloud storage. In Proceedings Workshop on Real-
Life Cryptographic Protocols and Standardization
(RLCPS 2010).

Kissner, L., & Song, D. (2005). Privacy-preserving set
operations. In Proceedings 25th Annual International
Cryptology Conference (CRYPTO 2005).

Lombardi, F., & Di Pietro, R. (2011). Secure virtu-
alization for cloud computing. Journal of Network
and Computer Applications, 34(4), 1113–1122.
doi:10.1016/j.jnca.2010.06.008

Martignoni, L., Poosankam, P., Zaharia, M., Han, J.,
McCamant, S., & Song, D. … Stoica, I. (2012). Cloud
terminal: Secure access to sensitive applications
from untrusted systems. In Proceedings of the 2012
USENIX Annual Technical Conference (ATC 2012).

Parrend, P., & Frenot, S. (2009). Security bench-
marks of OSGi platforms: Toward hardened OSGi.
Software, Practice & Experience, 39(5), 471–499.
doi:10.1002/spe.906

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

112 International Journal of Grid and High Performance Computing, 5(4), 97-112, October-December 2013

Pearson, S., & Benameur, A. (2010). Privacy, secu-
rity and trust issues arising from cloud computing.
In Proceedings of the Second IEEE International
Conference on Cloud Computing Technology and
Science (CloudCom 2010).

Pearson, S., Mont, M., Chen, L., & Reed, A. (2011).
End-to-end policy-based encryption and management
of data in the cloud. In Proceedings of the Third
IEEE International Conference on Cloud Computing
Technology and Science (CloudCom 2011).

Popa, R. A., Redfield, C. M. S., Zeldovich, N.,
& Balakrishnan, H. (2011). CryptDB: Protecting
confidentiality with encrypted query processing. In
Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (SOSP 2011).

Ristenpart, T., Tromer, E., Shacham, H., & Savage,
S. (2009) Hey, you, get off of my cloud: Exploring
information leakage in third-party compute clouds.
In Proceedings of the 16th ACM Conference on
Computer and Communications Security (CCS 2009).

Santos, N., Gummadi, K. P., & Rodrigues, R. (2009).
Towards trusted cloud computing. In Proceedings
USENIX Workshop on Hot Topics in Cloud Comput-
ing (HotCloud 2009).

Sehr, D., Muth, R., Biffle, C., Khimenko, V., Pasko,
E., & Schimpf, K. … Chen, B. (2010). Adapting
software fault isolation to contemporary CPU
architectures. In Proceedings of the 19th USENIX
Conference on Security (Security 2010).

van Dijk, M., & Juels, A. (2010). On the impossibility
of cryptography alone for privacy-preserving cloud
computing. In Proceedings 5th USENIX Workshop
on Hot Topics in Security (HotSec 2010).

Wallom, D., Turilli, M., Taylor, G., Hargreaves,
N., Martin, A., Raun, A., & McMoran, A. (2011)
myTrustedCloud: Trusted cloud infrastructure for
security-critical computation and data management.
In Proceedings of the Third IEEE International
Conference on Cloud Computing Technology and
Science (CloudCom 2011).

Wang, Q., Wang, C., Ren, K., Lou, W., & Li, J. (2011).
Enabling public auditability and data dynamics for
storage security in cloud computing. IEEE Transac-
tions on Parallel and Distributed Systems, 22(5),
847–859. doi:10.1109/TPDS.2010.183

Zhang, Y., Juels, A., Reiter, M. K., & Ristenpart,
T. (2012). Cross-VM side channels and their use
to extract private keys. In Proceedings of the 2012
ACM Conference on Computer and Communications
Security (CCS 2012).

CALL FOR ARTICLES

Please recommend this publication to your librarian. For a convenient easy-
to-use library recommendation form, please visit:

http://www.igi-global.com/IJGHPC

Ideas for Special Theme Issues may be submitted to the Editor-in-Chief.

All inquiries regarding IJGHPC should be directed to the
attention of:

Emmanuel Udoh, Editor-in-Chief
udohe123@yahoo.com

All manuscript submissions to IJGHPC should be sent
through the online submission system:

http://www.igi-global.com/authorseditors/titlesubmission/
newproject.aspx

COVERAGE/MAJOR TOPICS:
• Advanced collaboration techniques and scaling issues
• Algorithms and techniques for HPC
• Big Data
• Bio-inspired grid resource management
• Cloud architectures
• Cloud business process integration
• Cloud client and applications
• Cloud engineering and management
• Cloud foundation concepts
• Cloud Platforms and Infrastructures
• Cloud reliability and security
• Cloud Services
• Cloud standards
• Cloud types
• Combating global terrorism with the world wide grid
• Emerging standards for organizations and international

projects
• Future of grid, trends, and challenges
• Green data centers
• Grid and software engineering aspects
• Grid architecture, resources, and data management
• Grid economy, market dynamics, and simulations
• Grid education and applications - science, engineering,

and business
• Grid evolution, characterization, and concepts
• Grid fundamentals, algorithms, and performance analysis
• Grid impact, scientific, and industrial and social implications
• Grid instrumentation, measurement, and visualization
• Grid middleware, scheduling, brokering, and monitoring
• Grid portals and security
• Grid programming, models, tools, and API
• Grid services, concepts, specifications, and frameworks
• Grid uses and emerging technology
• New initiatives, SOA, autonomic computing, and semantic

grid
• Simple API for grid applications (SAGA)
• Software and hardware support for HPC
• Test, evaluation, and certificate presentation
• Wireless and optical grid, characteristics, and applications
• Work flow management

MISSION:
The primary mission of the International Journal of Grid and High Performance Computing
(IJGHPC) is to provide an international forum for the dissemination and development of theory and
practice in grid and cloud computing. IJGHPC publishes refereed and original research papers and
welcomes contributions on current trends, new issues, tools, societal impact, and directions for future
research in the areas of grid and cloud computing. This journal is targeted at both academic researchers
and practicing IT professionals.

ISSN 1938-0259
eISSN1938-0267

Published quarterly

An official publication of the Information Resources Management Association

International Journal of Grid and High
Performance Computing

