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ABSTRACT
Clouds provide a platform for efficiently and flexibly aggregating, storing, and processing large amounts of 
data. Eventually, sensor networks will automatically collect such data. A particular challenge regarding sensor 
data in Clouds is the inherent sensitive nature of sensed information. For current Cloud platforms, the data 
owner loses control over her sensor data once it enters the Cloud. This imposes a major adoption barrier 
for bridging Cloud computing and sensor networks, which we address henceforth. After analyzing threats to 
sensor data in Clouds, the authors propose a Cloud architecture that enables end-to-end control over sensitive 
sensor data by the data owner. The authors introduce a well-defined entry point from the sensor network into 
the Cloud, which enforces end-to-end data protection, applies encryption and integrity protection, and grants 
data access. Additionally, the authors enforce strict isolation of services. The authors show the feasibility and 
scalability of their Cloud architecture using a prototype and measurements.
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INTRODUCTION

Continuous advances in the areas of ubiquitous 
computing and sensor networks (Akyildiz et 
al., 2002) blur more and more the boundaries 
between the physical and the digital world. At 
the same time, Cloud computing turned into 

an established paradigm for outsourcing data 
storage and computation resources. These two 
trends, ubiquitous sensing and Cloud comput-
ing, complement each other naturally. Sensor 
networks are an ideal solution to collect infor-
mation about the physical environment, but 
they typically lack the resources to store and 
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process collected data over long periods of time. 
However, Cloud computing provides nearly 
unlimited storage and computing resources 
elastically. Additionally, Cloud-based services 
could make use of the data from a large number 
of sensor networks. How these services could 
be used is illustrated by the following example: 
Assume private weather stations that do not only 
provide a local view on current sensor readings, 
but also transmit their measurements to a fore-
cast service running in the Cloud. The Cloud 
service now is able to process and aggregate 
the received data and use it in a Cloud-based 
weather simulation in order to generate an ac-
curate forecast for a specific region.

However, one major concern with this 
approach is inherent to sensor data: it often 
contains private or otherwise sensitive (meta-)
information. The weather forecast service may, 
for example, require the location in addition to 
the raw, insensitive temperature values. While 
the data owner may be willing to share this 
sensitive information with selected services, 
she often does not trust the Cloud provider 
or other services. Thus, she may refrain from 
using Cloud-services that are based on her sen-
sor data. As previously identified for related 
scenarios (Chow et al., 2009; Henze et al., 
in press; Pearson & Benameur, 2010), these 
adoption barriers arise due to the loss of control 
of the data owner over her data. A number of 
approaches aiming at providing secure data 
storage and computation in the Cloud have 
been proposed. Typically, these approaches 
focus on providing hard security guarantees 
by using technologies such as trusted platform 
modules or homomorphic encryption (Gentry, 
2010; Santos et al, 2009; Wallom et al., 2011). 
These approaches are, however, inadequate 
for storing and processing sensitive sensor 
data in the Cloud. Either they do not provide 
the necessary user control over outsourced 
data in the Cloud or they introduce excessive 
encryption overhead, especially when applied 
to comparably small sensor data (Danezis & 
Livshits, 2011). Hence, we see the need for 
a practically viable approach for storing and 
processing sensor data in the Cloud.

This work is structured as follows: After this 
introduction, we provide a detailed overview of 
related work with a discussion how our propos-
als differentiate. Afterwards, we present threats 
originating from various entities that arise when 
outsourcing storage and processing of sensitive 
sensor data to the Cloud. In order to address 
these threats, we propose a security architecture 
for user-controlled storage and processing of 
sensor data in the cloud. Our proposed security 
architecture provides a Platform-as-a-Service 
(PaaS) for the execution of services that operate 
on sensor data in accordance with the necessary 
security requirements. For this purpose we of-
fer i) early protection of sensor data starting in 
the sensor network, ii) user-controlled access 
granting for selected services, and iii) strict 
service isolation within the Cloud platform. 
With these measures we enable the data owner 
to stay in control over who may access her data 
and, thus, make outsourcing sensor data to the 
Cloud viable.

RELATED WORK

We structure our discussion of related work 
into the following three research directions: i) 
architectures involving a trusted third-party, 
ii) secure operations on outsourced data, and 
iii) other related approaches to secure Cloud 
computing.

In a wide range of scenarios, architectures 
utilizing a trusted third-party similar to our 
Trust Point architecture have been proposed. 
However, these approaches typically restrict 
themselves to securing the transport of data 
and do not consider the object security that is 
crucial for our scenario. The Federal Office 
for Information Security in Germany (2011) 
specified a trusted gateway in order to guarantee 
privacy in intelligent energy networks. Our 
security architecture shows some similarities to 
this approach. However, our architecture allows 
a much more fine-granular access control for 
data. There are also a number of architectures 
involving a trusted third-party that have been 
proposed in the context of Cloud comput-
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ing. Kamara and Lauter (2010) propose an 
architecture similar to ours with respect to a 
trusted gateway encrypting outbound data and 
managing access policies. However, they do 
not consider the secure processing of data in 
the Cloud. Additionally, they require request-
ing access tokens from the gateway in order to 
access data. Hence, in contrast to our approach, 
data stored in the Cloud is only available when 
the gateway is reachable. The Twin Clouds 
architecture by Bugiel et al. (2011) utilizes 
Garbled Circuits for encrypting both data and 
programs in a trusted environment before pass-
ing them to the untrusted public Cloud. After 
this demanding setup phase, which has to be 
performed per data item, computations can be 
executed in the untrusted Cloud. However, 
the encrypted programs are limited to simple 
operations and require re-encryption after each 
execution. Pearson et al. (2011) introduce a 
Cloud design similar to ours that focuses on 
fine-grained access control for outsourced 
data. While their approach focuses on sticky 
policies that have to be enforced by a trusted 
third-party, our solution introduces the Trust 
Point and its binding with the Cloud, suggests 
a flexible design for object security on sensor 
data, and incorporates isolation mechanisms at 
the service-level in the Cloud.

Secure operations on outsourced data can 
be distinguished into secure data indexing and 
secure computations. The area of secure data 
indexing focuses on accessing encrypted data 
in a structured way in order to allow, e.g., range 
queries or keyword searches (Boneh & Waters, 
2007; Kamara & Lauter, 2011; Popa et al., 2011). 
In contrast, the field of secure computations 
deals with computations directly on encrypted 
data. One prominent example for this is (fully) 
homomorphic encryption (Gentry, 2010; Popa et 
al., 2011). However, especially when consider-
ing fully homomorphic encryption, high ineffi-
ciencies regarding computational overhead and 
key sizes can be observed (Danezis & Livshits, 
2011). As we consider indexing and processing 
of encrypted data promising, our flexible design 
of data object security mechanisms allows 
incorporating these approaches.

There is also a number of other related 
approaches to secure Cloud computing. These 
either build on the idea of using trusted hardware 
components in Cloud environments (Itani et 
al., 2009; Santos et al., 2009) or of performing 
data processing outside the Cloud. Approaches 
utililizing trusted hardware components require 
extensive support by the IaaS layer, whereas 
the requirements of our architecture to the IaaS 
can be implemented at the management level. 
Additionally, binding trusted components to 
specific hardware instances makes migrating 
virtual instances across multiple hardware 
platforms a challenging task (Wallom et al., 
2011). Performing data processing locally re-
duces the Cloud to a storage device (Bowers et 
al., 2009; Kamara & Lauter, 2010). In contrast 
to our approach, these solutions cannot profit 
from the elastic computational resources that 
the Cloud offers.

SCENARIO AND 
SECURITY CONCERNS

Sensor networks are typically dedicated and 
isolated networks, which collect information 
about their environment. A sink node that may 
either pre-process the raw data on-site or forward 
it directly to its actual consumer commonly 
collects the sensed raw data. In either case, the 
recipient of the collected information is known 
at the data sink. Hence, the collected data only 
leaves the network domain of the data owner on 
distinct and controlled paths. However, when the 
data owner outsources storage and processing 
of sensor data to the Cloud, the paths that this 
data take become ambiguous as multiple entities 
contribute to the overall service provisioning. 
More precisely, data sent by the sensor gateway 
through the Internet towards the Cloud traverses 
the network backbone infrastructure as well as 
the IaaS and PaaS layers before being processed 
by a service (see Figure 1). As a result of this 
layered architecture and the inherent use of 
multi-tenancy, potentially sensitive sensor 
data traverses an unknown set of systems. To 
overcome adoption barriers arising from this 
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uncertainty, a trusted Cloud architecture must 
prevent access to information by the Cloud 
provider and third parties, unless the data owner 
explicitly agrees to share it.

An extensive study of the high-level threats 
for outsourced data in the Cloud and the build-
ing blocks of a trusted Cloud has already been 
performed (Hummen et al., 2012). This study 
identified data confidentiality and integrity, 
data accountability, service availability, and 
assurance as the main threats, which have to 
be tackled using legal agreements, processes, 
and technology. In this work, we focus our 
discussion to specific threats when outsourcing 
sensor data to the Cloud. To this end, we first 
introduce the entities involved in the storage 
and processing of sensor data in the Cloud and 
present assumptions regarding these entities. We 
then identify specific threats that originate from 
these entities. Based on these threats, we derive 
security goals our architecture has to fulfill.

Entities

Sensor data that is owned by the data owner and 
outsourced to the Cloud is potentially exposed 
to different entities (see Figure 1). The cloud 
provider operates the Cloud and has the pos-
sibility to monitor any aspect of the Cloud at 
any time. Additionally, any service provider, 
which operates its service on top of the platform 
offered by the cloud provider, may try to ac-

cess any sensor data via the service. Finally, all 
sensor data generated by the sensor networks 
are transmitted to the Cloud via the Internet. 
The same holds for communication between 
the Cloud and end users accessing the data. 
Hence, an external attacker might eavesdrop on 
connections between the Cloud and any other 
entity, with no other purpose but to obtain in-
formation or manipulate data. Before discussing 
threats regarding these entities in more detail, 
we first present the high-level assumptions and 
adversary models for our scenario and entities.

Assumptions and 
Adversary Models

We assume that the Cloud provider obeys 
to an adversary model similar to that of an 
honest-but-curious adversary (Kissner & Song, 
2005). That means, it will operate technology, 
services, and interfaces as contractually agreed 
and will not actively spy into running services. 
However, it might try to learn as much as pos-
sible about the processed information and it 
might not guarantee long-term confidentiality 
of stored information. The service providers, 
on the contrary, are generally considered less 
trustworthy. This is due to the fact that the data 
owner cannot control which services are offered 
by the Cloud and those services may actively 
try to gain unconstrained access to sensor data 
that is not meant for disclosure to them. Some 

Figure 1. Different entities are involved in the general scenario of outsourcing storage and 
processing of sensor data to the Cloud
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level of trust in services can be gained after an 
audit of the service through the Cloud provider 
or a trusted third party. This is similar to the 
approach taken by today’s app stores. Outside 
entities must be seen as malicious adversar-
ies (Kissner & Song, 2005) that may perform 
arbitrary actions in order to break into com-
munication flows.

Threats

We now discuss potential threats for sensor 
data in the Cloud, originating from the different 
entities with their adversary models. First, we 
investigate the cloud provider’s possibilities to 
obtain sensor data without approval. Secondly, 
we have a look at attacks a service provider 
could launch. Finally, we discuss attacks that 
an external attacker could launch.

Threats from Cloud provider: In the fol-
lowing we differentiate three ways in which the 
honest-but-curious Cloud provider could try to 
access sensor data. Most intuitively, the Cloud 
provider can inspect the cloud storage that is 
used to persistently store sensor data in order 
to spy on the data. The Cloud provider is able 
to monitor any aspect of the Cloud at any time. 
Hence, it has the ability to inspect the Cloud’s 
storage at any time. Another possibility for the 
Cloud provider to get unintentional access to 
sensitive data is by eavesdropping, e.g., when 
collecting data (e.g., network statistics) on 
internal communication to satisfy its curios-
ity. This holds not only for the protected data 
but also for other sensitive information, i.e., 
information needed to decrypt protected data 
and computation results. Finally, the Cloud 
provider could (unintentionally) spy on ser-
vice information that leaked out of a run-time 
context or that survived the end of the run-time 
context of a service. This may be data left in 
memory or in temporary files on disks after a 
service released the respective resources. Note 
that the honest-but-curious adversary assumed 
here does explicitly not monitor the private run-
time memory of a service in order to obtain any 
of the information mentioned above. We also 
assume that the access to physical resources 

of the Cloud or virtual resources allocated by 
services is sufficiently restricted to make the 
direct investigation of those resources infeasible 
for others than the Cloud provider (Lombardi 
& Di Pietro, 2011).

Threats from service provider: We assume 
that service providers potentially are more 
aggressive attackers than the cloud provider. 
Therefore, we explicitly consider malicious 
service providers that actively try to access 
sensor data that they are not authorized to 
process. There are essentially two threats 
originating from malicious services: access 
escalation and service identification spoofing. 
We first discuss access escalation. To protect 
the Cloud, the Cloud provider has to manage 
the permissions of its customers in the Cloud. 
Services can attempt to bypass their access 
restrictions in various ways. A service could try 
to obtain additional permissions by exploiting 
errors in the implementation of the Cloud’s 
permission management. Furthermore, a service 
could launch side-channel attacks as described 
by Ristenpart et al. (2009) and Zhang et al. 
(2012) in order to obtain information about 
other services that are instanced within another 
virtual machine on the same physical device 
in the Cloud. Additionally, the service can try 
to break out of its virtualization environment 
entirely, gaining access to the physical device 
the service is instanced on. Using the second 
threat, service identification spoofing, a service 
impersonates another service and thus obtains 
unauthorized access to sensor data.

Threats from an external attacker: In our 
scenario, the Cloud is publicly available via 
the Internet. Hence, all entities in our scenario 
are subject to the commonly known security 
threats the Internet has yielded over time. In 
this section, we describe attacks a malicious 
external attacker could launch against the Cloud 
infrastructure used to realize the service. These 
are eavesdropping on connections, imperson-
ation of the Cloud, as well as data and service 
forgery. At first, we discuss eavesdropping 
on connections to the Cloud. Whenever data 
are communicated between a sensor network 
or a user and the Cloud, messages have to be 
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sent via the Internet. An external attacker can 
eavesdrop on the established communication 
channel in order to obtain confidential informa-
tion. The next threat arises from the external 
attacker trying to impersonate the Cloud. This 
way he would receive all the information any 
entity sends to the Cloud. For data forgery, a 
malicious attacker could try to manipulate the 
sensor data outsourced to the Cloud. This is not 
only limited to the sensor data being stored but 
also applies to the results of a service which 
operates on sensor data. A similar threat is 
service forgery. An external attacker can appear 
as man-in-the-middle when a service provider 
is about to deploy its service to the Cloud. His 
malicious service, which then again could at-
tempt any attack described earlier, would more 
likely be accepted and authorized by data owner 
than a genuinely deployed malicious service.

Security Goals

With respect to outsourcing storage and pro-
cessing of sensor data to the Cloud, technol-
ogy needs to provide the means to protect the 
privacy and security of sensitive sensor data in 
a multi-tenant system outside the trust domain 
of the data owner. Our main security goal is the 
control of the data owner over her sensor data 
when outsourcing storage and processing to 
the Cloud. To enable this control, our security 
architecture primarily has to meet the following 
high-level requirements.

• Authentication: All entities must be able 
to verify the identity of all other entities it 
interacts with.

• Secure Transport and Storage: All data 
must be secured properly during transport 
and storage.

• Data Confidentiality and Integrity: The 
data owner must be able to control who can 
access her data in- and outside the Cloud 
platform. Additionally, the data owner and 
Cloud services must be able to verify that 
data has not been manipulated.

• Trusted Services and Service Execution: 
The data owner must be sure which service 

operates on her data and what the service 
does with her data.

Based on these security goals, we con-
tinue with the presentation of our security 
architecture.

SECURITY ARCHITECTURE

In order to address the presented threats and 
meet the stated security goals, we developed 
a security architecture for the user-controlled 
storage and processing of sensor data in the 
Cloud. As stated earlier, the main goal of our 
work is to establish control of the data owner 
over her sensor data when outsourcing storage 
and processing to the Cloud. To achieve this 
goal, we identified four components, which we 
will discuss in the following. Before we dive 
into details, we first give a high-level overview 
of these components. We start our presentation 
with the bridging of the sensor network and 
the Cloud. This includes securing the transport 
between the sensor network gateway and the 
Cloud entry point. As transport security is 
terminated as soon as the Cloud receives the 
sensor data, we additionally add object secu-
rity. This allows end-to-end security from the 
sensor network to an authorized Cloud service 
as well as during storage. Figure 2 illustrates 
the different protection scopes of transport and 
object security. In order to grant authorized 
services access to data, the data owner has to 
provide the keys used for the object security to 
the service. We discuss possible methods for 
this key management task in a Cloud setting. 
Finally, multi-layer tenancy separation allows 
protecting data not only during transport and 
storage, but also during processing.

Bridging the Sensor Network 
and Cloud Domains

All data leave the trusted sensor work at a com-
mon point of control: the gateway that connects 
the sensor network with the outside world (e.g., 
the Internet). Hence, we realize our control and 
security mechanisms at this border point of the 
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sensor network. Specifically, we introduce the 
Trust Point, a new logical entity on the gateway. 
It acts as a bridge between the trust domain of 
the sensor network and the Cloud and performs 
the following three tasks. First, on behalf of the 
data owner, it forwards the sensor data to the 
Cloud platform. Second, during the transmis-
sion to the Cloud, it protects the confidentiality 
and integrity of the forwarded data. Third, it 
applies per-data item security measures in or-
der to establish control of the data owner over 
her data even after the transport protection is 
terminated in the Cloud. We discuss these tasks 
in the following sections.

The Cloud platform provider offers storage 
and processing resources to the data owner. 
To enable accountability (and billing), we 
require that data owners have to register with 
the Cloud platform. In order to allow the Trust 
Point to store data in the Cloud on behalf of the 
data owner, we have to bind its identity to the 
data owner’s account in the Cloud. We refrain 
from using the data owner’s credentials (e.g., 
username and password) on the Trust Point for 
security reasons. Instead, we identify the Trust 
Point using public key cryptography. We use 
the OAuth protocol (Hammer-Lahav, 2010) to 
bind the data owner’s credentials to the public 
key of the Trust Point. In the OAuth model, the 
data owner takes the role of the OAuth resource 
owner, whereas the Trust Point is the OAuth 
client and the Cloud PaaS represents the OAuth 
server (see Figure 3). To perform the binding 
process, the data owner first connects to the Trust 
Point using a TLS secured connection. The Trust 
Point then redirects her to the Cloud platform. 
So far, the Trust Point is unknown to the Cloud 

platform and there is no identity provided which 
could be authorized for future access. In order 
to provide such an identity, the Trust Point adds 
the fingerprint of its public key (i.e., its hash 
digest) to the redirect request. After the data 
owner authorized the Trust Point at the Cloud 
platform, the Cloud platform is able to create 
a mapping from the data owner’s username to 
the public key fingerprint of the Trust Point.

As soon as the authorization process has 
been completed, the platform redirects the data 
owner back to the Trust Point. Triggered by this 
second redirect, the Trust Point is now able to 
establish a secure connection with the Cloud 
platform. In order to identify itself, it uses its 
public key for the mutual authentication vari-
ant of the TLS handshake. As the Cloud now 
knows the Trust Point’s public key, correct 
binding and authorization of the Trust Point 
can now be verified. Now, the Cloud platform 
can safely accept sensor data transmitted by 
this Trust Point.

Object Security from 
Trust Point to Service

As motivated earlier, transport security is ter-
minated when the Cloud receives the sensor 
data (see Figure 2). At this point, the transport 
security mechanisms are stripped from the 
sensor data. Without further protection plain 
data would reside unprotected within the Cloud 
platform, which leads to several threats as 
discussed earlier.

To achieve end-to-end security from the 
Trust Point to an authorized service and during 
storage, the Trust Point adds additional object 

Figure 2. Transport security is terminated as soon as data reaches the Cloud entry point. To 
protect the path between Cloud entry point and service, we additionally employ object security.
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security mechanisms to the sensor data before 
transmitting them securely to the Cloud. The 
plain information of sensor data can now neither 
be accessed nor modified undetectably by an 
unauthorized third party. Furthermore, the ad-
ditional integrity protection cryptographically 
guarantees the accountability of sensor data to 
a specific data owner; even after the transport 
security has been terminated. This approach to 
object security is comparable to Digital Rights 
Management (DRM) (Becker et al., 2003) when 
treating the Cloud services as end-user devices 
in the DRM case. However, the main difference 
to our solution is that we do not require enforce-
ment of data access control on the service side.

A data item generated by a single sensor 
reading typically consists of multiple data 
fields, i.e., raw measurement values and meta 
data such as location and time. The type of data 
fields and meta data depends on the type of the 
sensor. A sensor attached to a windmill will most 
likely output data that is structured completely 
different compared to those of a sensor measur-
ing vital signs in a hospital. In order to cope 
with the variety of different sensor data types, 
we propose to use JavaScript Object Notation 
(JSON) (Crockford, 2006) for representing and 
serializing sensor data. We intentionally do 
not restrict the format of these JSON objects. 
However, we assume the existence of certain 
fields, which are necessary for indexing the 
data, such as identifiers for sensor node and 

gateway, timestamp, and sensor data type. These 
different data fields (raw measurement values 
and meta data) can demand for different levels 
of protection. For example, the raw temperature 
readings of a private outdoor weather station 
may not require confidentiality protection while 
sensitive meta-data such as location information 
does. In order to address this fact, we support 
different protection schemes for the different 
data fields of a data item. We note that both, 
Trust Point and Cloud service need a formal 
description of a sensor data type (identified by 
the data type field). In the context of JSON, this 
can be achieved using JSON Schema (Galiegue 
et al., 2013). We propose to enrich these schema 
definitions by instructions on how a specific 
data field should be encrypted. For each data 
field it is thus possible to specify if and with 
which encryption algorithm this field has to be 
encrypted. Utilizing JSON has the nice benefit 
that the communication of encryption param-
eters such as an identifier for used encryption 
key or the initialization vector can easily be 
represented using JSON Web Encryption (JWE) 
(Jones et al., 2013). We thus instruct the Trust 
Point to replace the plain value with a JWE 
object containing the cipher text and encryp-
tion parameters. To further realize fine-grained 
access control, individual protection keys can 
be used for different time spans (e.g., hours, 
days, weeks).

Figure 3. In order to set up a secure and mutually authenticated connection between the Trust 
Point and the Cloud, the data owner triggers the OAuth-based binding procedure
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The straightforward solution for confiden-
tiality protection is symmetric key encryption, 
e.g., AES. Our security design also enables 
the use of order-preserving and deterministic 
encryption (Boneh & Waters, 2007; Popa et al., 
2011) in order to allow search and sort operations 
on stored (encrypted) data. Similarly, efficient 
methods for homomorphic encryption (Popa et 
al., 2011) for selected operations on encrypted 
data (e.g., sum or average) can be used.

The integrity protection of our architecture 
is based on asymmetric key cryptography. To 
guarantee integrity of each data item, the Trust 
Point signs it with a private key. Thus, the integ-
rity protection covers the complete data item.

Service Assurance and 
Data Access Granting

To access data items and individual data fields, 
services need to have the keys used to protect 
them. This access has to be authorized by the 
data owner. Data owners have to be empowered 
to perform an informed decision regarding the 
services to authorize. Hence, Cloud services 
come with a service description (e.g., in a Cloud 
service market-place). This description contains 
high-level information about the purpose of 
the service and how the service uses the data 
provided. Conformance of the service imple-
mentation to the service description must be 
assured, e.g., via an audit by the Cloud provider 
or a trusted third party, similarly to practices 
applied in today’s app stores. The conformance 
is expressed via a cryptographic signature issued 
by the auditor and signing the service descrip-
tion and the service’s public key. A data owner 
agreeing with the service description provides 
the encryption keys used for the protection of 
the data fields to the service after verifying the 
signature. This is achieved by instructing the 
Trust Point to encrypt the respective encryp-
tion keys with the public key of the service 
and to transmit this secured information to 
the encryption key store located in the Cloud. 
The key store’s purpose is twofold. It offloads 
the Trust Point from the burden of frequent 
and repeated key requests causing expensive 

public key operations or the need to store a 
large number of keys. Additionally, it relaxes 
the requirement that the Trust Point needs to 
be continuously online. Connectivity to the 
Trust Point is only necessary to grant access 
to new tuples of key and service. Authorized 
services retrieve the encryption keys from the 
key store and decrypt them using their private 
keys. Similarly, for all authorized services, the 
Trust Point pushes new keys to the key store 
whenever the encryption keys change.

Multi-Layer Tenancy Separation

From the Trust Point on, tenant data is secured 
and securely separated during transport and 
storage by transport and object encryption. 
However, when processing data in services, 
sensitive information (e.g., decryption keys and 
the data owner’s decrypted sensor data) has to be 
stored and processed in an unencrypted manner 
in the run-time context of the service (van Dijk 
& Juels, 2010). Thus, our platform introduces 
secure Service Execution Environments (SEE) 
as containers for service execution, as depicted 
in Figure 4. The SEEs are the only place where 
data items are unencrypted inside the Cloud 
platform. SEEs isolate different tenants from 
each other and services are not able to leave 
their SEE or interfere with services in other 
SEEs. The SEE design has to guarantee tenant 
separation while scaling the number of services 
in a wide range. Either, individual services for a 
few thousand tenants, i.e., data owners, may be 
served from separate SEEs on the same physi-
cal machine. Or, the joint computing power of 
many physical machines may be required for 
services operating on huge amounts of data 
from various data owners.

Tenant separation relying on virtualization 
at the IaaS layer does not achieve this scalability. 
Even when using aggressive memory sharing 
techniques, the total number of VMs on the 
same physical hardware is limited by memory 
restrictions to a few hundreds (Martignoni et 
al., 2012). Hence, using a separate VM as SEE 
for each tenant and service does not support 
scenarios with several thousand instances. 
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Consequently, we implement the SEEs on top 
of an operating system, which is executed on 
Instances (typically VMs) offered by an IaaS 
provider. Note that tenant separation by the 
computing part of the IaaS is still required to 
isolate the PaaS provider from other IaaS users. 
This can be realized by a trusted hypervisor or 
simply by a process that ensures that only VMs 
of the PaaS provider are executed on the same 
physical hardware. Adherence of the IaaS pro-
vider to this requirement needs to be enforced, 
e.g., via legal agreements and regular audits. 
As data in transit and storage is protected by 
the object security mechanism, there are no 
specific separation requirements for the storage 
and networking subsystems at the IaaS layer.

When restricting to Java as a language for 
service development on the platform (which 
is not really desirable), an option would be 
to use the Java VM (JVM) as SEE. However, 
neither typical JVMs nor Java EE applica-
tion servers guarantee proper separation of 
executed applications and respective tenants. 
Security and isolation weaknesses of JVMs 
were investigated, e.g., within the context of 
OSGi (Parrend & Frenot, 2009) and research 
projects like I-JVM (Geoffray et al., 2009) are 
addressing them. Even though, these might be 
promising approaches for the future, we believe 
that currently SEE implementation and tenant 
separation closer to the kernel and the operating 
system is favorable. Hence, we propose here to 
use OS level containers such as BSD jails or 

Linux control groups as SEEs. The containers 
guarantee access isolation to and oversee usage 
of system resources such as CPU, memory, and 
I/O. Another option for further investigation and 
research is to implement sandboxes via LLVM, 
e.g., by extending the approach on software 
fault isolation described by Sehr et al. (2010).

In any case, existing containers need to be 
extended to enforce the usage of object security 
mechanisms by services. A dedicated object I/O 
API for services is defined “at the boundary” of 
the SEE while any other network and storage 
I/O can be forbidden. Incoming and outgoing 
objects are automatically decrypted or encrypted 
by this API, respectively. Cryptographic opera-
tions and corresponding key handling happen 
automatically in the run-time context of the 
actual service and tenant. This architecture 
enforces object encryption and supports the 
development of secure services as it relieves 
the programmer from the burden of manual 
key and encryption handling.

EVALUATION

We implemented a basic prototype, consisting of 
a Trust Point, Cloud platform, and Cloud service, 
in order to estimate the performance and prove 
the feasibility of our design. We us a Raspberry 
Pi Model B with 256 MiB of RAM, a clock 
speed of 700 MHz, and Raspbian (a Debian-
based Linux distribution for the Raspberry Pi) 

Figure 4. Multi-layer tenant separation is achieved using Virtual Machines (VMs) at the IaaS 
layer (solid lines) and Secure Execution Environments (SEEs) at the PaaS layer (dashed line)
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as operating system as hardware platform for the 
prototype of our Trust Point. In order to allow 
others to verify our experimentation results, we 
use Amazon Web Services (2013) 1st generation 
EC2 64-bit instances of type large (M1.large) 
and Ubuntu 12.04 as the operating system for 
our performance measurements in the Cloud. 
We are aware that Amazon EC2 does currently 
not guarantee the level of user isolation we 
desire for our architecture. Thus, we have a 
second prototype running on OpenStack where 
the desired level of isolation can be achieved 
by configuring respective policies for the filter 
scheduler. Our Trust Point-based architecture 
involves performance trade-offs with respect 
to computation and storage resources. Addi-
tionally, the multi-layer tenancy separation at 
the service level requires additional memory 
resources compared to pure IaaS virtualization. 
In the remainder of this section we quantify 
and analyze these overheads.

Cryptographic Primitives

We use cryptographic primitives with at least 
112-bit security for symmetric operations in 
order to provide data security up to the year 
2030 according to NIST (Barker et al., 2012). 
The choice of cryptographic primitives was 
further guided by reducing the computational 
burden on the Trust Point. Constantly, the 
Trust Point has to perform three different 
types of cryptographic operations: i) per-data 
field encryption, ii) per-data item signing, and 
iii) per-authorized service encryption of data 
encryption keys. For data field encryption, we 
use AES with 128 bit keys in CBC mode. As 
the AES operations only lead to a marginal 
overhead, we limit or analysis to sensor data 
containing only a single data field, unless speci-
fied otherwise explicitly. For data item signing, 
we use the ECDSA scheme with NIST curve 
P-224. Finally, for encrypting data encryption 
keys for authorized services we use RSA with 
2048 bit keys. This choice was mainly guided by 
the advantageous performance asymmetry for 
public-key operations, which lowers the burden 

on the Trust Point. For future revisions of our 
architecture we may replace RSA by elliptic 
curve encryption mechanisms such as ECIES.

Performance Overhead

There are extensive studies on the performance 
overhead of the transport security mechanisms 
employed by our architecture (Coarfa et al., 
2006). Thus, we focus on evaluating our object 
security mechanisms. These introduce com-
putational overhead for both Trust Point and 
Cloud. For the Trust Point, this overhead results 
from the per-data field encryption, the per-data 
item integrity protection, and the encryption of 
keys for authorized services. Correspondingly, 
services have to decrypt encrypted data fields 
before processing them and need to verify the 
integrity of data. In order to allow fine-grained 
data access control, the Trust Point periodically 
changes and distributes encryption keys. After 
each of these key changes, services have to 
decrypt the encryption keys with their private 
key. We measure this performance overhead 
using our OpenSSL-based prototype.

For each data point, we conducted 40 
measurements. We show the mean processing 
time for one data item with one data field as 
well as the corresponding standard deviation. 
The left part of Figure 5 shows the results for 
the processing time of a data item with one 
authorized service and increasing key change 
intervals. The results show that even for a key 
change interval of 1 second, our low-end Trust 
Point is able to process more than 80 data items 
per second. For a key change interval of only 10 
seconds, this value increases to 200 data items 
per second. The figure also shows that for key 
change intervals larger than 10 seconds, the 
integrity protection accounts for more than 75 
percent of the processing time. Thus, further 
increasing the key change interval reduces 
the per-data item processing time on the Trust 
Point only marginally. The right part of Figure 
5 shows the results for processing one data item 
with a key change interval of 1 second for an 
increasing number of authorized services. For 
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each additional service, the Trust Point has to 
encrypt the encryption key on every key change. 
The results show that even with a key change 
interval of 1 second and ten authorized services, 
the Trust Point is able to process more than 50 
data items per second. For an increasing number 
of authorized services, the data key encryption 
becomes the main bottleneck. To bring these 
numbers into perspective, assume a per-sensor 
sampling rate of one measurement per second 
and ten authorized services per sensor node. 
Even in this exaggerated scenario, the low-end 
Trust Point is able to protect sensor data for over 
50 nodes. In order to support higher sampling 
rates or larger network sizes, the hardware 
of the Trust Point can easily be scaled up or 
hardware support for cryptographic algorithms 
can be added. Thus, throughputs that are one to 
two orders of magnitude higher can easily be 
achieved. The main limiting factor for protect-
ing sensor data at the Trust Point are the public 
key operations for the data integrity mechanism 
and key distribution. Fortunately, modern multi-
core SoCs allow to perform these calculations 
at higher core speeds and in parallel compared 
to the single core architecture of the Raspberry 
Pi. Our evaluation shows that the number of 
data fields per data item only has a marginal 
influence on the maximum throughput of the 
Trust Point. The symmetric encryption used to 
encrypt data fields can be computed efficiently 

in 0.004 ms on the Raspberry Pi. Hence, our 
architecture smoothly scales with the number 
of data fields.

Considering Cloud services, we are in-
terested in the number of data items a service 
can decrypt and verify in one second. The left 
part of Figure 6 depicts the mean processing 
time for decrypting and verifying one data item 
for increasing key change intervals. Even for 
a key change interval of 1 second, the service 
is able do decrypt 500 data items per second. 
For a key change interval of 20 seconds, the 
throughput increases to nearly 1,000 data 
items per second. Again, the integrity protec-
tion leads to a constant performance overhead. 
In order to reduce this overhead, we propose 
two approaches, probabilistic verification and 
verification-as-a-service. If a service trusts the 
Cloud provider to a certain extend, the service 
can use probabilistic verification to only verify 
the integrity of a random sample and thus dra-
matically increase throughput. First results show 
that throughput can be increased up to 9,900 
data items per second for a verification prob-
ability of 10 percent and even up to 96,300 data 
items per second for a verification probability 
of 1 percent (Hummen et al., 2012). However, 
if deterministic verification is required (i.e., 
when using an untrusted Cloud provider), the 
data owner may use verification-as-a-service 
which can be offered by dedicated services that 

Figure 5. The mean time for processing one data item depends on the key change interval (left, 
one authorized service) and the number of authorized services (right, key change interval 1 s)
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continuously verify the integrity of all stored 
data (Wang et al., 2011). Overall, the results 
of the performance overhead evaluation show 
that our security design scales well for our 
intended scenario.

Storage Overhead

We identified two kinds of storage overhead 
that need to be evaluated. The first type of over-
head follows directly from the object security 
mechanisms, i.e., data encryption and integrity 
protection. The second type results from the 
storage of the encrypted keys in the Cloud.

We consider a simple JSON-encoded sen-
sor data item with four (unencrypted) meta data 
fields and an increasing number of measured 
values that have to be encrypted. The right part 
of Figure 6 depicts this storage overhead of our 
proposed object security mechanisms for an 
increasing number of (encrypted) data fields. 
The constant overhead for the JSON-encoded 
meta data accounts for 87 bytes and each mea-
sured value adds additional 27 bytes (assuming 
that data fields fit into a single 16 byte block). 
For each data field, the overhead consists of a 
16-byte initialization vector and an additional 
overhead of 31 bytes for the JSON-encoded 
JWE information. Additionally, the integrity 
protection checksum accounts for a constant 
overhead of 64 bytes plus 7 bytes for its JSON 
encoding. Consequently, the cryptographic stor-

age overhead grows linearly with the number of 
data fields in each data item. For a reasonable 
amount of data fields, this overhead is well 
manageable with the elastic storage resources 
offered by today’s Cloud solutions.

For each service that is authorized to access 
a data item, the Cloud stores the encryption keys 
of protected data items in its dedicated key store. 
Thus, the overhead for key storage in the Cloud 
strongly depends on the key change interval, the 
number of connected sensors, and the number 
services authorized to access a sensor’s data. 
Table 1 shows the calculated storage overhead 
per sensor and data field for varying key change 
intervals and number of services for one month 
of sensor data (assuming a sample rate of once 
per second). For a reasonable key change in-
terval, the key storage overhead approaches 
practical sizes, e.g., 70 MB per month at a per 
minute granularity for each authorized service. 
Additionally, the data owner may delete or ag-
gregate old data in order to decrease the total 
storage overhead in the Cloud. In conclusion, 
the storage overhead imposed by the security 
architecture is well manageable using the elastic 
storage capabilities of the Cloud.

SEE Memory Overhead

To evaluate the memory overhead imposed by 
the SEEs for service isolation, we developed 
an early SEE prototype based on Linux Secure 

Figure 6. The overhead consists of processing sensor data in a service (left, varying key change 
intervals) and storing encrypted sensor data (right, increasing number of data fields)
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Containers (LXC). Inside the LXC container, 
an OpenJDK JVM executed a minimal Java test 
service creating some I/O load every few sec-
onds. Each service was executed in its own LXC 
container, which guaranteed secure isolation of 
the processes (i.e., the JVMs) and which allowed 
to define quotas for processing, memory, and 
I/O usage. The memory consumed by a single 
SEE instance and the test service amounted to 
roughly 7 MiB. Consequently, we were able to 
launch more than 1000 SEEs in parallel on one 
EC2 large instance with 7.5 GiB of RAM. We 
did also not observe any issues with the kernel 
or scheduler due to the high number of contain-
ers, i.e., all services were able to perform their 
I/O operations as desired. Today’s IaaS Clouds 
can easily provide instances with more than 7.5 
GiB of RAM. For example, Amazon’s High 
Memory Cluster Eight Extra Large-Instance 
comes with 244 GiB of RAM (Amazon Web 
Services, 2013), which equates to more than 
32,000 SEEs each executing a different service 
at the desired level of separation on a single 
physical machine.

CONCLUSION

Multiple, possibly unknown or untrusted, stake-
holders are involved when outsourcing storage 
and processing of sensor data to the Cloud. In 
this paper, we discussed threats originating 
from these stakeholders. We counter these 
threats with a security architecture that enables 
the data owner to stay in control over her data. 
For this purpose, we introduce a Trust Point as 

a new logical entity. It is located at the sensor 
network’s border and acts as a bridge between 
the trust domains of the sensor network and 
the Cloud. Using the Trust Point, we i) imple-
ment transport security mechanisms for secure 
communication with the Cloud, ii) apply object 
security mechanisms to sensor data sent to the 
Cloud, and iii) perform key management in order 
to authorize services. Additionally, we suggest 
using isolation mechanisms for services, which 
mitigates the leakage of sensitive information 
from the run-time contexts of services. Our 
evaluation validates an adequate performance 
of our security architecture for the intended sce-
nario and shows that the introduced storage and 
memory overheads can be handled effectively. 
Thus, user-controlled storage and processing of 
sensor data in the Cloud is a promising exten-
sion of today’s Cloud offers.
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Table 1. Key storage overhead with respect to key change interval and authorized services 

Key Change Interval

1 Second 1 Minute 1 Hour 1 Day 1 Week 1 Month

Services 1 4.33GB 0.07GB 1.23MB 0.05MB 7.50KB 1.75KB

5 21.63GB 0.36GB 6.15MB 0.26MB 37.50KB 8.75KB

10 43.26GB 0.72GB 12.30MB 0.51MB 75.00KB 17.50KB
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