
A Cloud Design for User-controlled Storage and Processing of Sensor Data

René Hummen∗, Martin Henze∗, Daniel Catrein†, Klaus Wehrle∗
∗Communication and Distributed Systems, RWTH Aachen University, Germany

Email: {lastname}@comsys.rwth-aachen.de
†QSC AG, Germany

Email: {firstname.lastname}@qsc.de

Abstract—Ubiquitous sensing environments such as sensor
networks collect large amounts of data. This data volume is
destined to grow even further with the vision of the Internet
of Things. Cloud computing promises to elastically store and
process such sensor data. As an additional benefit, storage and
processing in the Cloud enables the efficient aggregation and
analysis of information from different data sources. However,
sensor data often contains privacy-relevant or otherwise sensi-
tive information. For current Cloud platforms, the data owner
looses control over her data once it enters the Cloud. This
imposes adoption barriers due to legal or privacy concerns.
Hence, a Cloud design is required that the data owner can trust
to handle her sensitive data securely. In this paper, we analyze
and define properties that a trusted Cloud design has to fulfill.
Based on this analysis, we present the security architecture
of SensorCloud. Our proposed security architecture enforces
end-to-end data access control by the data owner reaching
from the sensor network to the Cloud storage and processing
subsystems as well as strict isolation up to the service-level.
We evaluate the validity and feasibility of our Cloud design
with an analysis of our early prototype. Our results show that
our proposed security architecture is a promising extension of
today’s Cloud offers.

Keywords-Cloud, WSN, Security, Architecture

I. INTRODUCTION

Today, the boundaries between the physical world and the
digital world continue to blur due to advances in the areas of
ubiquitous computing and wireless sensor networks [1]. At
the same time, the Cloud computing paradigm has become
an established alternative to dedicated on premises data
storage and computation resources. Both trends, ubiquitous
sensing and Cloud computing, complement each other in
a natural way. Sensor networks collect information about
the physical environment, but typically lack the resources
to store and process the collected data over long periods
of time. Cloud computing elastically provides the missing
storage and computing resources. Specifically, it allows to
store, process, and access the collected sensor data ef-
fectively via Cloud-based services. To illustrate this fact,
consider the following example: Private weather stations do
not only provide a local view on current sensor readings,
but additionally transmit their measurements to forecast
services running in the Cloud. The Cloud services process
and aggregate the received sensor readings and use them in
a Cloud-based weather simulation that generates an accurate

forecast for a specific region. This forecast is then fed back
to the private weather stations in order to provide its owner
with an added value service.

Cloud-based services that operate on sensor data would
largely contribute to enriching or creating new services such
as the one described above. However, sensor data often
contains privacy or otherwise sensitive (meta-)information.
For example, the weather forecast service may require the
sensor data owner to reveal her location in addition to the
raw, insensitive temperature values. While the data owner
may be willing to share this sensitive information with
services that she authorized, she oftentimes does not trust
the Cloud provider or other services to handle her sensitive
data securely. Therefore, she may refrain completely from
using Cloud-services that are based on her sensor data.
This dilemma highlights the adoption barriers for Cloud
computing on sensor data. These adoption barriers arise due
to the loss of control of the data owner over her data as
previously identified for related scenarios [2], [3].

There exist a number of approaches that aim at providing
secure data storage and computation in the Cloud. These
approaches typically focus on providing hard security guar-
antees by using cryptographic primitives such as trusted
platform modules or homomorphic encryption [4], [5], [6].
However, the proposed approaches are inadequate for the
purpose of storing sensitive sensor data in today’s Cloud
environments. They either do not provide the necessary
user control over outsourced data in the Cloud or they
introduce excessive encryption overhead when applied to
comparably small sensor data [7]. Hence, we see the need
for a practically viable approach to storing and processing
sensor data in the Cloud.

Our contribution is as follows: Firstly, we analyze the
specific threats and security requirements that arise when
outsourcing storage and processing of possibly sensitive
sensor data to the Cloud. Secondly, we discuss how these
properties can be assured and communicated to the user in
brief. Based on this discussion, we propose the security ar-
chitecture of SensorCloud. SensorCloud provides a platform
(PaaS) for the execution of services that operate on sensor
data while satisfying and ensuring the derived trust and
security requirements. Our proposed security architecture
implements i) early protection of sensor data already in

Cloud IaaS Sensor Network

Data

Data

Cloud PaaS

Service

Service

Data Owner

Internet

Data
Data

Data

Data Flow

Gateway

Figure 1. Abstract overview of a generalized Cloud scenario when
outsourcing storage and processing of sensor data to the Cloud. Data flows
originate from individual sensors and are forwarded by the gateway to the
Cloud. Within the Cloud, data traverses the IaaS, PaaS, and SaaS layers.

the sensor network, ii) user-controlled granting of access to
user-selected Cloud services, and iii) strict service isolation
within the Cloud platform. These properties enable the data
owner to stay in control over which entities may access her
data in the Cloud and, thus, make Cloud-based services on
sensor data viable.

II. SENSORCLOUD SCENARIO AND SECURITY CONCERNS

Sensor networks typically are dedicated and isolated net-
works that collect information about their environment. The
sensed raw data is commonly collected by a sink node that
may either pre-process the raw data on-site or forward it
directly to its actual consumer. In either case, the recipient of
the collected information is known at the data sink. Hence,
the collected data only leaves the network domain of the
data owner on distinct and controlled paths.

However, when the data owner outsources storage and
processing of sensor data to the Cloud, the paths that this
data takes become ambiguous as multiple entities contribute
to the overall service provisioning. More precisely, data
sent by the sensor gateway towards the Cloud traverses
the IaaS and PaaS layers before being processed by a
service (see Figure 1). The IaaS layer virtualizes its available
physical resources and offers these to multiple IaaS users.
The PaaS layer is one of these users. It implements the
run-time environments and APIs that grant a multitude of
services access to the received and stored sensor data. As
a result of this layered architecture and the inherent use
of multi-tenancy, potentially sensitive sensor data traverses
an unknown set of systems. To overcome adoption barriers
arising from this uncertainty, a trusted Cloud design must
prevent access to information by the Cloud provider and
third parties, unless the data owner explicitly agrees to share
it. We now analyze the specific threats when outsourcing
sensor data to the Cloud in order to identify the issues that
a trusted Cloud design needs to protect against.

A. Threats for Outsourced Data in the Cloud

Due to the involvement of multiple stakeholders, there ex-
ists a number of threats that are specific to outsourcing data
to the Cloud. To address these threats in a structured way, our

analysis follows the high-level security objectives identified
by NIST [8]. These objectives are confidentiality, integrity,
availability, accountability, and assurance. We focus our
discussion on threats specific to the SensorCloud scenario.
Generic threats for Cloud computing (e.g., infrastructure
availability) are also relevant. However, these have already
been studied extensively in [3], [9], [10], [11].
Data confidentiality and integrity: Unprotected sensor data
transmitted to the Cloud for storage and processing can
be accessed or altered by entities other than the legitimate
stakeholders involved in the respective operations. Data in
transit between the sensor network and the Cloud infras-
tructure may be acquired or deliberately modified by an
attacker that is located on or besides the communication
path. Furthermore, sensor data in the Cloud is exposed
to potential access or modification by privileged staff of
the Cloud provider (IaaS or PaaS provider). Finally, Cloud
storage and computing resources are typically shared by a
multitude of users and services that are unknown to each
other. Thus, unauthorized users or services may gain access
or modify information if the isolation mechanisms of the
Cloud platform are insufficient.
Data accountability: Once sensor data enters the Cloud
platform, the data owner loses control over who can access
her data. Specifically, the IaaS or PaaS provider (including
their employees) may forward stored data to unauthorized
third parties without the data owner acknowledging or even
recognizing this transfer. Likewise, a Cloud service may pass
data that it is authorized to process to a third party unnoticed
by the data owner. Consequently, sensitive information may
potentially spread across Cloud platform boundaries without
the knowledge of the data owner.
Service Availability: The data owner becomes dependent
on the SaaS provider when transferring her sensor data to
the Cloud for subsequent processing. This is particularly
true when the result of the processing is time critical,
e.g., to trigger an actor or raise an alarm. Hence, the data
owner requires a certain service availability guarantee from
the SaaS provider. The SaaS provider, in turn, can only
fulfill its guaranteed availability if the PaaS provider can
ensure availability of its platform and the IaaS provider can
ensure the availability of its physical resources. Thus, the
disruption of Cloud service by a malicious Cloud user, e.g.,
by imposing high load on the shared physical infrastructure,
is highly intolerable on any Cloud layer.
Assurance: Assurance denotes the confidence that technical
and operational security measures work as intended to meet
the objectives discussed above. Both false positive and false
negative assurances impose risks. A data owner may falsely
conclude that all the required security measures are in place
as she is not an expert in the domain of Cloud security and
it is beyond her technical capability to verify the measures
in detail. As a consequence, while she assumes her data

to be secure, one or more of the threats associated with
the objectives discussed above persist. Likewise, the lack
of transparency regarding the measures used in the Cloud
platform to secure the data storage and processing may
effectively cause the platform to be perceived by the data
owner as insecure as today’s Cloud platforms. As a result,
the data owner would consider the overhead of the employed
security mechanisms as additional costs. These costs may
drive her to cheaper but less secure Cloud competitors.

We now give a brief overview of the principal building
blocks that are at our disposal in order to solve the identified
threats in a complex system such as a public Cloud platform.

B. Building Blocks of a Trusted Cloud

There exist three high-level instruments that support
the stakeholders of a Cloud system in counteracting the
threats discussed above: legal agreements, processes, and
technology. Legal agreements allow the IaaS, PaaS, and
SaaS providers as well as the data owner to make binding
statements about their service requirements and provisioned
service properties. An often-cited example are service level
agreements stating technical properties such as a service
availability of 99.999%. Furthermore, legal agreements can
also refer to processes, e.g., regular certification or audits
of the Cloud platform. To ensure the commitment of the
contract partners, legal agreements commonly introduce
fines when not obeying the agreed obligations.

Processes allow the contract partners to determine and
ensure that legal obligations are met. In the context of
a trusted Cloud platform, processes can be used by the
Cloud provider to prove, e.g., that the technology applied
to provide security guarantees is correctly implemented and
used. Correspondingly, processes cover the development,
operation, and certification or audit of a Cloud platform.

Technology represents the foundation of a trusted Cloud
platform. With respect to outsourcing storage and processing
of sensor data to the Cloud, technology needs to provide the
means to protect the privacy and security of sensitive sensor
data in a multi-tenant system outside the trust domain of
the data owner. The main technologies used today for this
purpose are cryptography and separation of concerns, e.g.,
via virtualization.

We briefly discuss the role of processes and legal agree-
ments in the following description of our Cloud security
architecture. However, due to space restrictions, the main
focus of this paper lies on the technological aspects of a
trusted Cloud platform that form the underlying basis for
processes and legal agreements. We now proceed with the
description of our proposed security architecture.

III. SENSORCLOUD SECURITY ARCHITECTURE

The SensorCloud security architecture emphasizes control
of the data owner over her sensor data when outsourcing
storage and processing to the Cloud. To enable this control,

the SensorCloud security architecture primarily has to meet
the following high-level requirements.
Data confidentiality and accountability: The data owner
must be able to control who can access her data in- and
outside the Cloud platform.
Data integrity: The data owner and Cloud services must be
able to verify that the stored data has not been manipulated.
Service availability: The Cloud PaaS provider must ensure
that the Cloud IaaS layer is available and that Cloud services
are accessible.

With respect to assurance, we assume that the IaaS
and PaaS provider ensure compliance to security standards
such as the Common Criteria for Information Technology
Security Evaluation (CC) or ISO/IEC 27001 by means of
independent audits and certifications. These audits and cer-
tifications allow to assure the Cloud users that the required
security guarantees have been considered and met already
since the early development processes of the Cloud platform.

Additionally, we make the following assumption while
addressing our high-level requirements. Within the bound-
aries of the sensor network, we assume that data is trans-
ferred securely to the gateway according to its sensitivity.
This involves confidentiality and integrity protection where
necessary. Considering the gateway, we assume that its
configuration is secure and access control mechanisms are
implemented properly. Additionally, the gateway is able to
uniquely match incoming sensor data to the corresponding
sensing device. With respect to the Cloud platform, we
assume that the Cloud providers themselves are not hostile.
Specifically, the IaaS and PaaS provider operate technology,
services, and interfaces as contractually agreed. Furthermore,
we assume that the IaaS cloud is reliable and cleanly
separates different users. Thus, other IaaS users can neither
influence the operation of the PaaS platform nor access data
and services while they are processed in the PaaS. Finally, a
Cloud service that is authorized by the data owner to process
her data holds to its appropriation as agreed with the data
owner. Most importantly, the Cloud service does not hand
data over to an unauthorized third party.

A. Bridging the Sensor Network and Cloud Domains

We reason that the gateway connecting the sensor network
with the external network (e.g., the Internet) is the common
point of control for all data leaving the data owner’s trust
domain. Hence, we realize our control and security mech-
anisms at this border of the sensor network. Specifically,
we introduce the Trust Point as a new logical entity that
is situated on the gateway. It acts as a bridge between the
security domain of the sensor network and the Cloud and
performs the following three tasks. First, it forwards the
sensor data to the Cloud platform on behalf of the data
owner. Second, it protects the confidentiality and integrity
of the forwarded data during the transmission to the Cloud.

User Management!
1) Login,!
 Bind!

2) Redirect, Login, Grant!

4) Token!

3) Redirect,!
 Token!

Data!

Data!

Data Owner!

Trust Point!
Cloud PaaS!

Figure 2. OAuth protocol flow in SensorCloud. The data owner triggers
the binding procedure at the Trust Point and is redirected to the Cloud
platform. She then authenticates and authorizes the Trust Point. After the
redirection to the Trust Point, a secure connection is established between
the Trust Point and the Cloud platform.

Third, it applies per-data item security measures in order
to establish control of the data owner over her data even
after the transport protection is terminated in the Cloud. We
discuss these tasks in the following sections.

The PaaS provider offers storage resources for sensor data
to the data owner. For reasons of accountability, we require
the data owner to register with the Cloud platform. As the
Trust Point stores data in the Cloud on behalf of the data
owner, we need to bind its identity to the data owner’s
identity in the Cloud. We do not directly use the owner’s
credentials (e.g., username and password) on the Trust Point
as a data owner may own several Trust Points for different
sensor networks. Instead, we identify the Trust Point by
means of public key cryptography. To bind the data owner’s
credentials to the public key of the Trust Point, we use the
OAuth protocol [12]. The data owner takes the role of the
OAuth resource owner, whereas the Trust Point is the client
and the Cloud PaaS represents the server (see Figure 2).
To trigger the binding process, the data owner sets up a
secured connection with the Trust Point via TLS. The Trust
Point then redirects her to the Cloud platform. However,
the Cloud platform lacks an identity of the Trust Point that
it can authorize for subsequent access, as the Trust Point
is unknown to the Cloud platform at this time. Hence, the
Trust Point encodes the fingerprint of its public key (i.e.,
its hash digest) in the redirect of the data owner to the
Cloud platform. This enables the Cloud platform to store a
mapping from the data owner’s username to the public key
fingerprint of the Trust Point, if the data owner authorizes
the Trust Point at the Cloud platform. After the authorization
procedure in the Cloud platform has been completed, the
platform refers the data owner back to the Trust Point.

As a result of this second redirect, the Trust Point estab-
lishes a secure connection with the Cloud platform using
its public key that corresponds to the previously exchanged
fingerprint. The use of the mutual authentication variant of
the TLS handshake in this connection establishment enables
the Cloud platform to verify that the Trust Point has been
correctly bound and authorized by the data owner before.
Only then the Cloud platform accepts sensor data forwarded
by this Trust Point.

Data
Field

Data!
Field! ICS

K1 K2 K3 K0 PKTP

Data
Field

Data
Field

Enc.
Type

Key
ID Data

Data Item

Keys:

Figure 3. Object security consists of encryption of individual data fields
(representing meta-data and raw data) and an integrity checksum (ICS)
covering the complete data item. Each data field may be encoded using
a key with a different ID and a different algorithm allowing for different
confidentiality mechanisms to be used on individual data fields.

B. Object Security from Trust Point to Service

Transport security is terminated when sensor data is
received in the Cloud. As a result, the transport security
mechanisms are stripped from the sensor data and plain data
would reside unprotected within the Cloud platform. This
leaves the data stored in the Cloud open to several forms of
attacks as discussed in Section II.

To achieve end-to-end security from the Trust Point to
an authorized service and during storage, the Trust Point
complements sensor data with additional object security
mechanisms before transmitting them securely to the Cloud.
In consequence, the plain information of sensor data can
neither be accessed nor modified undetectably by an unau-
thorized third party. Furthermore, the employed integrity
protection cryptographically ensures the accountability of
sensor data to a specific data owner even after stripping
the transport security mechanisms. Our approach to ob-
ject security is comparable to Digital Rights Management
(DRM) [13] when treating the Cloud service as end-user
devices in the DRM case. However, the main difference to
our solution is that we do not require enforcement of data
access control on the service side.

Typically, a data item generated by a single sensor reading
comprises of multiple data fields, i.e., raw measurement
values and meta data such as location and time. These
different fields can demand for different levels of protection.
For example, the raw temperature readings of a private
weather station may not require confidentiality protection
while sensitive meta-data such as location information does.
We design for this fact by supporting different protection
schemes for the different data fields of a data item (see Fig-
ure 3). To realize fine-grained access control, individual
protection keys can be used for different time spans (e.g.,
hourly, daily, and monthly).

In its simplest form, confidentiality protection is achieved
with symmetric key encryption such as AES. To support
search and sort operations on stored data, e.g., on time
stamps, our object security design also allows the use of
deterministic and order-preserving encryption [14], [15].
Likewise, it supports the use of efficient forms of homomor-
phic encryption for selected operations on encrypted data
(e.g., sum or average) [14].

Cloud Service!
Marketplace!

Data!

Data!

Data Owner!
!

Trust Point!
Cloud PaaS!

Service
Description

Public
Key Signature

Encryption!
Key-store!

1) Look-up

3) Store

Figure 4. Service authorization by the data owner. The data owner looks up
a service and its service description in the Cloud Service Marketplace. She
then instructs her Trust Point to encrypt her data for the selected service.
The Trust Point stores the encryption keys for this service in the encryption
key-store.

Integrity protection in SensorCloud is based on asymmet-
ric key cryptography. Specifically, the Trust Point signs each
data item with its private key. Hence, while object encryption
is performed on data fields, integrity protection spans the
complete data item.

C. Service Assurance and Data Access Granting

The object security mechanisms employed in SensorCloud
prevent access to the data owner’s data items in the Cloud.
Thus, she needs to authorize services if she wants them to
process her data. To enable the data owner to perform an in-
formed decision regarding which service to authorize, Cloud
services provide a service description about themselves (e.g.,
in a Cloud service market-place) as depicted in Figure 4.
This description contains high-level information about the
kind of data it operates on and the purpose of the service.
The conformance of the service to the service description
must be verified by the Cloud provider or a trusted third
party before approving the service to the Cloud platform
similar to current practices on the smart phone market. If the
data owner agrees with the service description, she needs to
provide the encryption keys used for the protection of the
data fields that she wants to share. This is done by instructing
the Trust Point to encrypt the respective encryption keys with
the public key of the service and to transmit this secured
information to the encryption key store located in the Cloud.
The required public key of the service is provided as a part
of the service description. Authorized services request the
encryption keys from the key store and decrypt them with
their private keys. Similarly, new keys for all authorized
services are pushed to the key store by the Trust Point
whenever the encryption keys change.

D. Multi-layer Tenancy Separation

The transport and object-based encryption mechanisms
ensure separation of sensor data from multiple tenants during
transmission and storage. As the run-time context of a
service contains sensitive information (e.g., decryption keys
and the data owner’s decrypted sensor data), encryption does
not suffice to separate the tenant data during processing [16].
Thus, our platform isolates different tenants securely and by
default in secure Service Execution Environments (SEE), as

Service

SEE

VM

SEE

VM

Service

SEE

IaaS Infrastructure

VM

Figure 5. Multi-layer tenant separation by Secure Execution Environment
(SEE) in the Cloud PaaS layer (dashed line) and by Virtual Machines (VMs)
in the Cloud IaaS layer (solid line).

depicted in Figure 5. The SEEs are the only place where
data items are unencrypted inside the Cloud platform. They
ensure that services are not able to leave their SEE or
interfere with services in other SEEs.

One requirement for our SEE design is that the platform
guarantees tenant separation while scaling the number of
services in a wide range. Typically, individual services for
a few thousand data owners will be served from separate
SEEs on the same physical machine. Likewise, the joined
computing power of many physical machines will be re-
quired if services operate on huge amounts of data from
various data owners.

Tenant separation relying purely on virtualization at the
IaaS layer does not achieve this scalability. Due to memory
restrictions, typical hypervisors can execute some tenth of
virtual machines (VMs) on the same physical hardware.
When the same application is run in parallel, aggressive
memory sharing can be used to reduce the memory overhead
of each VM. However, even then the total number of
VMs on the same physical hardware is limited to a few
hundreds [17]. Thus, implementing the SEE as a VM and
having one VM per service is not feasible for a scenario
with several thousand instances. Hence, the SEEs need to
be implemented by our SensorCloud platform on top of
an operating system running on instances (typically VMs)
offered by the IaaS. We still rely on tenant separation by
the computing part of the IaaS to isolate the SensorCloud
PaaS provider from other IaaS users. Technically, this can be
realized with a trusted hypervisor or simply by a process that
only deploys VMs of the SensorCloud PaaS provider on the
same physical hardware. The PaaS provider should ensure
the adherence of the IaaS provider to this requirement, e.g.,
via regular audits required by legal agreements. As data
in transit and storage is protected by the object security
mechanisms, there are no specific separation requirements
for the storage and networking subsystems of the IaaS layer.

Because implementing SEEs as VMs is not feasible in our
scenario, we have to look for a more fine-grained approach.
Given Java as a language for service development on the
platform, one option would be to leave tenant separation to
the Java VM (JVM) layer. However, neither typical JVMs
nor Java EE application servers guarantee separation of
executed applications. Security and isolation weaknesses

of JVMs were investigated, e.g., within the context of
OSGi [18]. Recent research projects like I-JVM [19] are
addressing these issues and are promising approaches for
the future. However, we believe that currently the kernel
and the operating system are the best means for enforcing
tenant separation. Hence, our design is based on a multitude
of JVMs running in parallel in isolated containers as dif-
ferent system processes for different tenants. The containers
guarantee access to and oversee usage of system resources
such as CPU, memory, and I/O. They can be implemented
as BSD jails or Linux control groups.

To enforce the usage of object security mechanisms by
services, a dedicated object I/O API for services is defined in
the SEE while forbidding any other network and storage I/O.
Furthermore, the decryption of incoming and the encryption
of outgoing data is provided as an (open source) library
functionality that is used within the run-time context of
the actual service. This architecture eases the development
of secure services as it relieves the programmer from the
burden of manual key and encryption handling.

IV. EVALUATION

For the performance estimation of our design, we imple-
mented a basic prototype that consists of a Trust Point and
a Cloud platform. The Trust Point is a Linksys WRT160nl
commodity router with 400 MHz that runs the Linux-
based operating system OpenWRT. To allow for independent
verification of our results, we use the Amazon EC2 IaaS
platform with 64-bit instances of type large and Ubuntu
12.04 as the operating system for our Cloud measurements.
Note that Amazon EC2 currently does not guarantee the
desired level of user isolation. However, it can be achieved
in our early IaaS prototype based on OpenStack by using
corresponding policies for the filter scheduler.

Regarding the Trust Point-based architecture, Sensor-
Cloud involves performance trade-offs with respect to com-
putations and storage. Furthermore, the multi-layer tenancy
separation at the Service Execution Environment-level re-
quires additional memory resources compared to pure vir-
tualization on the IaaS layer. We now quantify and analyze
these overheads.
Choice of cryptographic primitives: For our evaluation, we
chose cryptographic primitives with at least 112 bit security
providing data security up to the year 2030 according to
NIST [20]. Furthermore, our cipher choice was guided by
the aim to lower the computational burden on the Trust
Point. The Trust Point constantly performs three types of
cryptographic operations: i) per-data field encryption, ii) per-
data item signing, and iii) per-authorized service encryption
of data encryption keys. For the data field encryption, we
use AES with 128 bit keys in CBC mode. Unless specified
otherwise, we restrict our analysis to sensor data with a
single data field, as the AES operations only represent a
marginal overhead in our system. For signatures, we use

0 2 4 6 8 10

Key Change Interval (sec)

0

50

100

150

200

D
a
ta

It
e
m

s
/

se
c

1 Service

10 Services

50 Services

100 Services

(a) Gateway performance

0 2 4 6 8 10

Key Change Interval (sec)

101

102

103

104

105

106

D
a
ta

It
e
m

s
/

se
c

p = 1

p = 0.1

p = 0.01

p = 0.001

(b) Cloud service performance

Figure 6. The left figure shows the data throughput of the gateway
depending on the number of authorized services and the key change interval.
In the right figure, the performance of a Cloud service depending on the
integrity validation probability p and the key change interval is shown.

the ECDSA scheme with NIST curve P-224. Finally, the
Trust Point encrypts data encryption keys with RSA using
2048 bit keys as RSA provides us with an advantageous
performance asymmetry for public-key operations. However,
future revisions of our architecture may replace RSA by
elliptic curve encryption mechanisms such as ECIES.

Performance overhead: The performance overhead of the
transport security mechanisms employed in SensorCloud
have been well studied [21]. Hence, we focus our evalu-
ation on the object security mechanisms of SensorCloud.
Our object security mechanisms introduces a computational
overhead on both the Trust Point and the Cloud platform.
This overhead is introduced by the per-data field encryption
and the per-data item integrity protection at the Trust Point.
Likewise, services must decrypt encrypted data fields before
processing them and may need to verify the integrity of
stored data upon look-up. Moreover, the Trust Point changes
the encryption keys periodically based on the desired granu-
larity of the data access control. Accordingly, services need
to decrypt the data encryption keys with their private key
after each key change. The performance estimates of these
operations are based on the OpenSSL implementation.

The results indicate that already at an access granularity
of 2 seconds, our low-end Trust Point can process about
160 data items per second if 50 services are authorized to
access these items (see star in Figure 6(a)). Only access
granularities in the order of several hundred milliseconds
(see Figure 6(a) with a key change interval close to 0 sec-
onds) are infeasible. To bring these numbers into perspective,
assume a per-sensor sampling rate of 1 measurement per
second. In this case, the SensorCloud security architecture
allows a low-end Trust Point to protect sensor data for over
150 nodes. If higher sampling rates or larger network sizes
need to be supported, the hardware of the Trust Point can
easily be scaled up or hardware support for the cryptographic
algorithms could be added in order to achieve throughputs

1 2 3 4 5 6 7 8 9 10

Number Data Fields

0

50

100

150

200

250

S
iz

e
(b

y
te

s)

plain

encryption

integrity

Figure 7. The storage overhead of the object security mechanism for each
data item stays constant for an increasing number of data fields.

that are 1 − 2 orders of magnitude higher. Specifically,
the calculation of the data integrity mechanism denotes the
limiting factor of the sensor data processing at the Trust
Point. Modern multi-core CPUs allow to perform these cal-
culations in parallel and at higher core speeds compared to
a commodity router. Moreover, the number of data fields per
data item only have a marginal influence on the maximum
throughput of the Trust Point as symmetric encryption can
be computed efficiently at 0.004 ms per data field. Hence,
the SensorCloud security architecture also scales well with
an increasing number of data fields.

A Cloud service may either access a live stream of a
specific sensor or process sensor data that is stored in
the Cloud (e.g., for services based on histories of sensor
data). A service may likewise aggregate data from multiple
sensors. Our results suggest that a service can process about
1000 data items per second if it verifies the integrity of
all items (see Figure 6(b) for p = 1). This throughput
suffices for small-scale services that operate on live data.
However, large-scale services that aggregate data from multi-
ple sensors require higher throughputs. Data throughput can
be increased considerably, if the Cloud provider is trusted
to a large extend. In this case, a Cloud service may only
need to verify the data integrity for a random sample. For
example, the data throughput increases to about 9900 or
96300 if the service randomly validates the integrity of
p = 0.1 or p = 0.01 of the processed items respectively.
In contrast, if deterministic verification is required for an
untrusted Cloud storage provider, the data owner may use
a dedicated third-party service that runs in the background
and continuously verifies the data integrity. This allows for
a continuous data integrity verification without the need to
download the sensor data from the Cloud. Overall, the results
show that the performance of our design scales as intended
for our scenario.

Storage overhead: We distinguish two kinds of storage
overhead in our evaluation. The first type of overhead is
generated by the object security mechanisms themselves,
i.e., sensor data encryption and integrity protection. The
second type results from the encryption key storage in the
Cloud. We restrict our estimation of the storage overhead to

Key Change Interval
1 second 1 minute 1 hour 1 day 1 week 1 month

D
at

a
Fi

el
ds 1 4.33GB 0.07GB 1.23MB 0.05MB 7.50KB 1.75KB

5 21.63GB 0.36GB 6.15MB 0.26MB 37.50KB 8.75KB

10 43.26GB 0.72GB 12.30MB 0.51MB 75.00KB 17.50KB

Table I
KEY STORAGE OVERHEAD

the pure overhead of the cryptographic ciphers and assume
data fields that fit into a single 16 byte block. The specific
storage overhead strongly depends on the exact encoding of
the data fields and their respective information.

The calculated storage overhead of our proposed object
security mechanism is shown in Figure 7. The overhead
consists of a 16 byte initialization vector per-data item for
the data field encryption and a 64 byte integrity protection
checksum. The encryption of the individual data fields does
not add further overhead. Consequently, the cryptographic
storage overhead of each data item is constant and amounts
to 80 byte in addition to the actual sensor data. This overhead
is well manageable with the elastic storage resources of
today’s Cloud offers.

The Cloud platform securely stores the encryption keys
of protected data items in its dedicated key store for each
service that is authorized to access a data item. Hence,
the encryption key storage overhead in the Cloud strongly
depends on the key granularity as well as the number of
connected sensors and services that are authorized to access
the data of the sensor. Tab. I depicts the calculated per-
sensor storage overhead for different key granularities for
one month worth of sensor data. Similar to the processing
overhead of the employed object security mechanisms at the
Trust Point, the key storage overhead approaches practical
sizes with decreasing data access granularities, e.g., 70 MB
at a per minute granularity for each data field. Note that
old sensor data may be stale or may not have the same
informational value for the data owner or her authorized
services when compared to recently collected data. Hence,
the data owner may delete or aggregate old data in order to
decrease the total storage overhead in the Cloud with respect
to sensor data, object security, and encryption key storage.
We conclude that the storage overhead of SensorCloud is
well manageable by the elastic storage capabilities provided
by a Cloud platform.
SEE memory overhead: We developed an early SEE pro-
totype for the evaluation of the memory overhead for the
service isolation. An SEE consists of a dedicated OpenJDK
JVM that is executed inside an application-level Linux
Secure Container (LXC). LXC guarantees secure isolation of
the processes (i.e., the JVMs) and allows to define quotas for
processing, memory, and I/O usage. As we are interested in
the memory overhead of the SEE itself, we used a minimal

test service written in Java for our evaluation. The memory
consumed by one SEE instance and the test service together
amounts to roughly 7 MB. Consequently, we were able to
launch more than 1000 SEEs in parallel on one EC2 large
instance with 7.5 GB of RAM. As IaaS environments like
Amazon provide instances with up to about 70 GB of RAM,
we can safely assume that we can run more than 10,000
SEEs with different services at the desired level of separation
on a single physical machine.

V. RELATED WORK

For our discussion of related work, we distinguish the
following three research directions: i) architectures involving
a trusted third-party, ii) secure operations on outsourced data,
and iii) other related approaches to secure Cloud computing.

Architectures utilizing a trusted third-party similar to our
Trust Point have been proposed in a wide range of scenarios.
In the context of Wi-Fi-sharing communities, a trusted
relay can be used to mitigate security, privacy, and legal
issues [22]. However, such data flow-focused approaches
typically restrict themselves to the use of transport security
and do not consider the object security that is necessary in
our scenario. To guarantee privacy in intelligent energy net-
works in Germany, a trusted gateway has been specified [23].
Although our security architecture shows similarities to
this approach, its PKI-based approach does not allow for
similarly fine-granular access control on sensor data.

A number of architectures involving a trusted third-party
have been proposed in the context of Cloud computing.
Kamara et al. [24] propose an architecture that resembles
ours with respect to fact that a trusted gateway encrypts
outbound data and manages access policies. However, the
authors do not consider the secure computation of data by
Cloud services and require the data consumer to request
access tokens from the gateway. Hence, their approach
does not consider the necessary Cloud service isolation.
Furthermore, data stored in the Cloud becomes unavailable
if the gateway is offline. The Twin Clouds architecture [25]
uses Garbled Circuits to encrypt both outsourced data and
programs in a trusted (private) Cloud. After this demanding
per-data item setup phase, computations can be performed
on an untrusted public Cloud platform. However, encrypted
programs only perform simple operations and need to be
re-encrypted after each execution. Similar to our security
architecture, Pearson et al. [26] introduce a Cloud design that
focuses on fine-grained access control for outsourced data
by the data owner. However, while their approach focuses
on sticky policies that are enforced by an external trust
authority, our contribution includes the introduction of the
Trust Point and its binding with the Cloud, a flexible design
for object security on sensor data, and the incorporation of
isolation mechanisms in the Cloud at the service-level.

Secure operations on outsourced data can further be
classified into secure data querying and secure computations.

The field of secure data querying focuses on retrieving
encrypted data in a structured way in order to allow, e.g.,
range queries or keyword searches [14], [24], [15]. In
contrast, secure computations allow for direct computations
on encrypted data. A prominent example of the latter cryp-
tographic primitive is (fully) homomorphic encryption [6],
[14]. However, especially fully homomorphic encryption still
is highly inefficient regarding the computational overhead
and key sizes [7]. As described in Section III-B, our flex-
ible design of data object security mechanisms allows to
incorporate efficient approaches for querying and processing
encrypted data.

A number of other related approaches to secure Cloud
computing have been proposed in the past. They either build
on the fundamental idea of using trusted hardware com-
ponents in Cloud environments [27], [4] or of performing
data processing locally. However, TPM-based approaches
require hardware support by the IaaS layer, whereas the
IaaS requirements of our architecture can be implemented at
the management level. Furthermore, the binding of trusted
components to specific hardware makes the migration of
virtual instances across multiple hardware platforms chal-
lenging [5]. When performing data processing locally, the
Cloud is merely used as a storage device [24], [11] and
computations are done outside the Cloud within the trusted
domain of the data owner [7]. In contrast to our approach,
these solutions do not take advantage from the elastic
computational resources that are offered by the Cloud.

VI. CONCLUSION

When outsourcing storage and processing of sensor data
to the Cloud, multiple possibly unknown or untrusted stake-
holders become involved. In this paper, we identified the
specific threats that arise from this uncertain involvement.
Our proposed SensorCloud security architecture counters
these threats by allowing the data owner to stay in control
over her data even in a Cloud scenario. To this end, we
introduce a Trust Point as a new logical entity that is
located at the border of the sensor network and acts as a
bridge between the security domain of the sensor network
and the Cloud. The Trust Point i) implements transport
security mechanisms for communication with the Cloud,
ii) applies object security mechanisms to outbound data
items, and iii) performs key management for authorized
services. To mitigate leakage of sensitive information from
the run-time contexts of services, we additionally propose
the use of isolation mechanisms all the way up to the service-
level. Our evaluation shows that our proposed SensorCloud
security architecture has an adequate performance for the
intended scenario and that the involved storage and memory
overheads can be handled effectively. This makes the user-
controlled storage and processing of sensor data a promising
extension of today’s Cloud offers.

ACKNOWLEDGMENT

The authors would like to thank the members of the
SensorCloud consortium for the inspiring discussions on the
concepts described in this paper. The SensorCloud project
is funded by the german Federal Ministry of Economics
and Technology under the project funding reference number
01MD11049. The responsibility for the content of this
publication lies with the authors.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“A Survey on Sensor Networks,” IEEE Comm. Mag., vol. 40,
no. 8, 2002.

[2] S. Pearson and A. Benameur, “Privacy, Security and Trust
Issues Arising from Cloud Computing,” in Proc. IEEE Cloud-
Com, 2010.

[3] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Ma-
suoka, and J. Molina, “Controlling Data in the Cloud: Out-
sourcing Computation without Outsourcing Control,” in Proc.
ACM CCSW, 2009.

[4] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards
Trusted Cloud Computing,” in Proc. USENIX HotCloud,
2009.

[5] D. Wallom, M. Turilli, G. Taylor, N. Hargreaves, A. Mar-
tin, A. Raun, and A. McMoran, “myTrustedCloud: Trusted
Cloud Infrastructure for Security-critical Computation and
Data Managment,” in Proc. IEEE CloudCom, 2011.

[6] C. Gentry, “Computing Arbitrary Functions of Encrypted
Data,” Commun. ACM, vol. 53, no. 3, 2010.

[7] G. Danezis and B. Livshits, “Towards Ensuring Client-Side
Computational Integrity,” in Proc. ACM CCSW, 2011.

[8] G. Stoneburner, “Underlying Technical Models for Informa-
tion Technology Security,” NIST Special Publication 800-33,
National Institute of Standards and Technology, 2001.

[9] M. Jensen, J. Schwenk, N. Gruschka, and L. Iacono, “On
Technical Security Issues in Cloud Computing,” in Proc.
IEEE CLOUD, 2009.

[10] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
You, Get Off of My Cloud: Exploring Information Leakage
in Third-Party Compute Clouds,” in Proc. CCS, 2009.

[11] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-
Availability and Integrity Layer for Cloud Storage,” in Proc.
ACM CCS, 2009.

[12] E. Hammer-Lahav, “The OAuth 1.0 Protocol,” RFC 5849
(Informational), IETF, 2010.

[13] E. Becker, W. Buhse, D. Günnewig, and N. Rump, Eds.,
Digital Rights Management. Springer, 2003.

[14] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakr-
ishnan, “CryptDB: Protecting Confidentiality with Encrypted
Query Processing,” in Proc. ACM SOSP, 2011.

[15] D. Boneh and B. Waters, “Conjunctive, Subset, and Range
Queries on Encrypted Data,” in Proc. TCC, 2007, LNCS
4392.

[16] M. Van Dijk and A. Juels, “On the Impossibility of Cryp-
tography Alone for Privacy-Preserving Cloud Computing,” in
Proc. USENIX HotSec, 2010.

[17] L. Martignoni, P. Poosankam, M. Zaharia, J. Han, S. McCa-
mant, D. Song, V. Paxson, A. Perrig, S. Shenker, and I. Stoica,
“Cloud Terminal: Secure Access to Sensitive Applications
from Untrusted Systems,” in Proc. USENIX ATC, 2012.

[18] P. Parrend and S. Frenot, “Security benchmarks of OSGi
platforms: toward Hardened OSGi,” Softw: Pract. Exper,
vol. 39, 2009.

[19] N. Geoffray, G. Thomas, G. Muller, P. Parrend, S. Frénot, and
B. Folliot, “I-JVM: a Java Virtual Machine for Component
Isolation in OSGi,” in Proc. IEEE/IFIP DSN, 2009.

[20] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid,
“Recommendation for Key Management – Part 1: General
(Revision 3),” NIST Special Publication 800-57, National
Institute of Standards and Technology, 2012.

[21] C. Coarfa, P. Druschel, and D. S. Wallach, “Performance
Analysis of TLS Web servers,” ACM Trans. Comput. Syst.,
vol. 24, no. 1, 2006.

[22] T. Heer, T. Jansen, R. Hummen, S. Götz, H. Wirtz, E. We-
ingärtner, and K. Wehrle, “PiSA-SA: Municipal Wi-Fi Based
on Wi-Fi Sharing,” in Proc. ICCCN, 2010.

[23] “Protection Profile for the Gateway of a Smart Metering Sys-
tem,” v01.01.01(final draft), Federal Office for Information
Security, Germany, 2011.

[24] S. Kamara and K. Lauter, “Cryptographic Cloud Storage,” in
Proc. RLCPS, 2010, LNCS 6054.

[25] S. Bugiel, S. Nürnberger, A.-R. Sadeghi, and T. Schneider,
“Twin Clouds: Secure Cloud Computing with Low Latency,”
in Proc. IFIP CMS, 2011, LNCS 7025.

[26] S. Pearson, M. Mont, L. Chen, and A. Reed, “End-to-End
Policy-Based Encryption and Management of Data in the
Cloud,” in Proc. IEEE CloudCom, 2011.

[27] W. Itani, A. Kayssi, and A. Chehab, “Privacy as a Service:
Privacy-Aware Data Storage and Processing in Cloud Com-
puting Architectures,” in Proc. IEEE DASC, 2009.

