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ABSTRACT
The ongoing digitization of industrial manufacturing leads to a
decisive change in industrial communication paradigms. Moving
from traditional one-to-one to many-to-many communication, pub-
lish/subscribe systems promise a more dynamic and efficient ex-
change of data. However, the resulting significantly more complex
communication relationships render traditional end-to-end security
futile for sufficiently protecting the sensitive and safety-critical data
transmitted in industrial systems. Most notably, the central message
brokers inherent in publish/subscribe systems introduce a desig-
nated weak spot for security as they can access all communication
messages. To address this issue, we propose ENTRUST, a novel solu-
tion for key server-based end-to-end security in publish/subscribe
systems. ENTRUST transparently realizes confidentiality, integrity,
and authentication for publish/subscribe systems without any mod-
ification of the underlying protocol. We exemplarily implement
ENTRUST on top of MQTT, the de-facto standard for machine-to-
machine communication, showing that ENTRUST can integrate
seamlessly into existing publish/subscribe systems.

CCS CONCEPTS
• Security and privacy→ Security protocols; • Networks→
Application layer protocols; • Computer systems organiza-
tion → Embedded and cyber-physical systems.
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1 INTRODUCTION
Historically, production and manufacturing deployments are real-
ized in separated networks and based on one-to-one communica-
tion, i.e., one device requests the state of another device to adapt
its processes. For example, SCADA systems periodically request
the state of connected programmable logic controllers (PLCs) or
remote terminal units (RTUs) and respond with control commands
or updates of setpoints [15, 16].

In modern deployments, this antiquated simplistic communica-
tion pattern will change drastically: Movements such as the Indus-
try 4.0 [30] and the Internet of Production [42] will deploy more and
more sensors to provide data for future production or processing
steps [20] as well as further analysis [41]. As a result, a vast ex-
change of (sensor and control) data will emerge, leading to dynamic
communication relationships between various endpoints [43] and
moving from one-to-one to many-to-many communication [29, 46].

The most promising communication paradigm to address these
ascending communication demands is Publish/Subscribe (PubSub),
which significantly reduces the complexity of many-to-many com-
munication systems by decoupling senders and recipients using
a central message broker [14]. However, while transmitted data
is often extremely sensitive [15, 41], and secure communication is
inevitable to meet confidentiality and safety requirements, PubSub
complicates the establishment of secure connections. Contrary to
one-to-one communication, where traditional end-to-end (E2E) se-
cure protocols, e.g., basing on TLS or the OPC UA Binary Protocol,
can be used (although many industrial deployments fail to do so cor-
rectly or at all [6]), many-to-many communication requires more
than two partners to negotiate key material, making established
handshake procedures impossible. As a result, the message broker
as the central component constitutes a precarious weak spot for
security in PubSub-based industrial communication.

Indeed, related work predicts more attacks against CPSs in fu-
ture [10] and has shown that many Internet-facing message brokers
are configured insecurely [32] enabling attackers to eavesdrop on
sensitive information or inject commands into communication.
However, even correctly secured brokers might violate the security
and privacy of involved stakeholders. Thus, apart from offering a
plethora of suitable targets, the brokers need to be fully trusted not
to compromise the integrity and confidentiality of transmitted data.

In this paper, we address the pressing issue of missing E2E se-
curity in PubSub communication, which requires unrealistically
high trust in centrally managed message brokers. To this end, we
propose ENTRUST, a novel and efficient scheme for key server-
based end-to-end security in publish/subscribe systems. ENTRUST
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enables confidential, integrity protected, and authenticated com-
munication utilizing the PubSub paradigm without any trust re-
quirements regarding on-path message brokers. Notably, ENTRUST
seamlessly integrates into existing PubSub protocols. It neither re-
quires changes to the underlying PubSub protocol nor the message
broker and does not introduce any additional Internet-reachable
entities, allowing for easy deployment without increasing the at-
tack surface. Thus, ENTRUST can be gradually deployed in any
existing CPS scenario relying on PubSub communication as long
as all participants in a certain message flow support ENTRUST.

While ENTRUST is not first to focus on security in PubSub sys-
tems, previous works are either difficult to deploy, e.g., by requiring
changes to the broker implementation [5, 26, 49] or require to ex-
pose new services, thus introducing new attack vectors [29, 37].

Contributions. Our main contributions are as follows.
• We distill the benefits of many-to-many communication in
CPS and identify the need for E2E security to protect against
misconfigured, insecure, or malicious message brokers.

• We propose ENTRUST, a novel and transparent E2E security
protocol for well-established PubSub communication. EN-
TRUST exclusively relies on already enabled Internet-facing
services and thus does not require any changes to the PubSub
protocol or any (on-path) message broker.

• We show the feasibility and applicability of ENTRUST on
top of the predominantly used PubSub protocol MQTT.

Organization.After introducing real-worldmany-to-many com-
munication scenarios and the benefits of the PubSub paradigm in
Section 2, we derive the need for E2E security in Section 3. In Sec-
tion 4 we show that related work is not able to cover all of our
identified needs, which is why we propose ENTRUST, our proto-
col allowing for transparent and secure communication in PubSub
schemes in Section 5. Afterward, we discuss ENTRUST’s security
properties in Section 6 and further demonstrate its (computational)
feasibility in Section 7. Finally, Section 8 concludes this paper.

2 MANY-TO-MANY COMMUNICATION IN
CYBER-PHYSICAL SYSTEMS

In traditional, isolated production networks, devices communicate
in a one-to-one fashion using proprietary protocols [11, 48], such
as Modbus [35] or ProfiNet [25]. These protocols mainly allow
requesting specific values other devices hold and respond with
control commands or value updates, e.g., as in SCADA systems.

However, Industry 4.0 [30] drastically changes communication
patterns and demands, as industrial networks (i) grow with more
and more systems generating and receiving data [17, 46], (ii) require
unified protocols to enable this variety of devices to communicate
with each other [2], as well as (iii) move closer to other computer
networks and the Internet [4, 6, 48], all to (iv) enable more and
more different entities to receive production data for different use
cases [18], e.g., production-to-production communication [43].

To address these requirements of future industrial communica-
tion, where an increasing number of devices generate data, and
more and more entities require to receive this data, i.e., a shift to
many-to-many machine-to-machine communication occurs, Pub-
lish/Subscribe (PubSub) communication significantly reduces com-
plexity [14].While traditional server/client communication requires

entities to maintain a state for every participant, with PubSub, ev-
ery participant has to maintain a single state only. To this end, the
PubSub paradigm introduces a central broker, to which all com-
munication partners establish a connection, and thus decouples
senders and receivers. Instead of maintaining multiple one-to-one
connections, senders now simply publish their data to the central
broker, which relays the data to all receivers that subscribed to a
specific content (in content-based PubSub) or topic (in topic-based
PubSub). Promising protocols for industrial communication, such as
OPC UA, already provide support for PubSub communication [37],
highlighting its relevance.

While the introduced broker reduces the connection complexity,
it also presents a critical element regarding security as it is used to
transmit the entirety of data CPSs generate. This data encompasses
information such as readings [32], which might allow conclusions
on the current production process, e.g., which products are pro-
duced or how well a specific factory performs [44], and commands
controlling specific CPSs [32], e.g., movement commands for robots.

Takeaway: PubSub communication is a promising candidate to
account for the needs of industrial (machine-to-machine) dataflows
and reduce the complexity in the face of a large number of new many-
to-many patterns. However, the added central broker challenges the
security of all passed messages as it mediates and relays all dataflows.

3 THE NEED FOR E2E SECURITY
While the central broker instance processing all communication
allows to reduce the communication complexity, it also introduces
a sweet spot for attackers as it is in control over all (safety-critical)
control messages and (potentially confidential) sensor data.

To achieve their privacy and safety regulations, i.e., keep their
transmitted data private and prevent unauthorized clients from
sending commands, operators face two challengeswhen setting up a
broker. First, operators must ensure that only authorized clients are
able to send and receive data via the communication infrastructure,
and second, no instance on the communication path should be able
to inject, alter, or drop data. Both goals do not only encompass
clients connected to a broker but also the broker itself.

Below, we identify two vectors for attackers to gain access to
this sweet spot (Section 3.1) and subsequently derive requirements
for E2E security to eliminate these vectors (Section 3.2).

3.1 Attack Vectors in PubSub Communication
The security of PubSub communication, i.e., confidentiality and
authenticity of messages, is strongly tied to the security of the
broker mediating all dataflows. As shown in Figure 1, this situation
results in two primary attack vectors on PubSub communication:
misconfigured brokers as well as malicious or compromised brokers.

Misconfigured Broker: The simplified communication struc-
ture introduced by PubSub also simplifies attacks.While it is straight-
forward for publishers and subscribers to connect to a broker and
exchange data via specific topics, it is also easy for attackers to do
so, i.e., connect to a broker as well as publish and/or subscribe to
specific topics. Consequently, an attacker could inject commands
into ongoing communication within a specific topic, directly violat-
ing safety requirements, as well as receive a copy of all messages
for a specific topic, breaking confidentiality demands.
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Figure 1: Twofold risks in publish/subscribe deployments;
misconfigured or malicious message brokers put secure com-
munication at risk as a sweetspot for attackers.

To address these security issues, many PubSub protocols pro-
vide authentication mechanisms [3, 19], allowing brokers to restrict
access to specific topics to authenticated and authorized clients.
However, recent research has shown that many Internet-reachable
brokers implementing MQTT [3], one of the predominantly used
PubSub protocols, do not implement access control correctly [32].
These brokers allow everybody on the Internet to receive the trans-
mitted data and potentially inject messages as no further protection
is applied to the communication. This undesirable state highlights
the need to protect against misconfigured brokers, as any configu-
ration flaw directly impacts security.

Malicious or Compromised Broker: Even if fully secure im-
plementation and configuration of brokers could be assumed, as
of now, full trust in the broker is required, as brokers (i) have to
implement and enforce configured access rules as instructed and
(ii) must not eavesdrop or alter any transmitted messages. In the
case of a malicious or compromised broker, these trust assumptions
do not hold, and both confidentiality and safety are at stake. Hence,
a malicious broker and corresponding attackers would be able to
eavesdrop on every transmitted message to conclude about (pro-
duction) processes the CPSs are involved in, or even alter, inject or
drop messages to control and disturb these processes.

The risk of malicious or compromised brokers further increases
when operators do not set up their own broker infrastructure but
instead rely on cloud infrastructure or services, where (often un-
known) third-party entities are responsible for correctly setting
up and maintaining the broker [21, 22, 26]. Consequently, not only
configuration and implementation errors but also malicious inten-
tions or compromises of brokers (potentially run on third-party
infrastructure) severely threaten the confidentiality and safety of
CPSs communicating globally over PubSub protocols.

3.2 Requirements for E2E Security
The main problem leading to both attack vectors results from an
inherent design decision of PubSub communication: To efficiently
distribute data received from publishers to several subscribers, the
broker is given access to all transmitted data in plaintext [5]. To
solve this issue and thus take the burden of being a valuable target
for attacker off the broker, we are strongly convinced that it is
imperative to protect transmitted payload against changes and
access by unauthorized entities between sender and receiver using
E2E security [50]. Accounting for the in current PubSub protocols
unconsidered support for E2E security, we identify five essential

requirements that must be addressed to improve the state of modern
PubSub systems and mitigate the existing attack vectors.

R1: Information Security. To prevent that any entities other
than the legitimate subscribers are able to read or alter the commu-
nication or intercept the connection, the E2E security scheme must
ensure confidentiality, integrity, and authenticity [39, 53]. While
confidentiality is required to keep valuable information such as pro-
cess parameters private, integrity protection is crucial to prevent
external entities from altering messages containing commands to
control machines, as these could potentially cause production out-
ages or harm humans. Furthermore, authenticity allows subscribers
to verify that messages are sent by a legitimate publisher, i.e., unau-
thorized entities are not able to undetectably inject messages into
ongoing communication.

R2: Detection of Dropping and Duplication. In addition to
ensuring that transmitted data is not altered and no additional data
is injected into an ongoing communication, it is also important to
enable subscribers to detect dropping or duplication of legitimate
communication messages [39]. Dropped or duplicated and replayed
messages could interfere with ongoing production processes lead-
ing to commands for specific actions being not performed or being
performed more than once. Both aspects introduce a significant
safety problem [7, 21], i.e., outages or harm to humans.

R3: Decoupling of Senders and Receivers. An important
property of PubSub is the decoupling of senders and receivers [5,
29], allowing publishers to send messages without any knowledge
on the subscribers retrieving these messages. Consequently, E2E
security has to preserve this foundational property of PubSub, as
otherwise communication complexity would again be increased,
superseding the benefits of PubSub.

R4: Deployability. To ensure wide use of E2E security, it has to
be designed in a deployable manner, i.e., security mechanisms must
not introduce fundamental changes to current PubSub deployments.
Here, it is especially important that the broker implementation
remains untouched. Changes to the broker would prevent operators
from using E2E security whenever it is maintained by a third party,
e.g., a cloud provider. Furthermore, the scheme must not require
any services other than the broker being reachable directly for the
clients as any addition could increase the attack surface, especially
when a service is Internet-facing. Likewise, any system should
support a reasonable level of granularity in terms of security policies
and access control to account for the varying needs of individual
dataflows in PubSub communication [29].

R5: Efficiency. Finally, it is essential that E2E security is efficient
by not introducing significant communication latency and data
overhead. As E2E security introduces more load on the end hosts,
which in many CPS applications have only limited resources [29],
it is important that all security operations can be performed effi-
ciently, as complex mechanisms would introduce too much latency.
Furthermore, applied security mechanisms must not add too many
additional data to be transmitted, which would require larger ca-
pacity in industrial networks. Especially in PubSub deployments,
where messages are distributed to various recipients, even small
overhead leads to a significant added burden.

Takeaway: The central broker in PubSub is an attractive target for
attackers. E2E security allows to take this burden off the broker, but any
attempt to realize it has to consider five distinct design requirements.



Approach Information
Security (R1)

Dropping / Duplication
Detection (R2) Decoupling (R3) Deployability (R4) Efficiency (R5)

Naïve, e.g., [9, 24, 45]
FRAMEWORK [39]
SMQTT [50]
PICADOR [5]
OPC UA [37]
JEDI [29]
MQT-TZ [49]
MOUCON [26]

Table 1: None of the related work approaches covers all requirements for secure PubSub communication in industrial environ-
ments. Thus, to mitigate any unsafe conditions, the E2E security of such infrastructures should be revisited.

4 RELATEDWORK
While the security of PubSub systems has been studied extensively,
e.g., [33, 51], realizing E2E security for PubSub communication has
only been studied by few approaches to date. In this section, we
survey approaches to realize E2E security for PubSub communica-
tion from related work and analyze, whether they meet our generic
requirements for E2E security in PubSub systems (cf. Section 3.2).
We provide an overview on our survey of related work in Table 1.

Naïve Approach: Outside of PubSub communication, E2E secu-
rity is a valuable concept to thwart different attacks, e.g., eavesdrop-
ping or modification attacks. Most notably, (D)TLS [9, 45] allows
to realize E2E security for Internet communication and specifically
tailored variants for resource-constrained CPSs exist, e.g., [24].

While a naïve approach to realize E2E security would be to
apply these already established mechanisms on top of the PubSub
protocol, such an approach cannot meet the requirements that
we identified in Section 3.2: Although these protocols implement
information security (R1), would be deployablewithout any changes
to the broker when applied on top of the PubSub protocol (R4),
and typically implement duplication and dropping detection using
nonces (R2), this approach would completely destroy all benefits
introduced by PubSub. These protocols would require the publishers
to perform a handshake with all subscribers, to encrypt a message
for every subscriber independently giving up the sender/receiver
decoupling (R3), and introducing a tremendous overhead (R5).

FRAMEWORK: In the context of the Narada Brokering sys-
tem [38], Pallickara et al. [39] propose a framework that allows
clients to communicate via secure topics where the communica-
tion is E2E protected. To this end, on behalf of a topic owner, key
management centers manage encryption keys as well as access
tokens and send them to authorized clients. The key management
centers only provide the key material and access tokens to autho-
rized clients by checking their client certificate, which prevents
other (malicious) entities from eavesdropping and modifying mes-
sages (R1). Furthermore, in the design, senders and receivers are
still decoupled (R3).

However, while publishers include a timestamp in the message
that enables subscribers to detect duplicated messages, subscribers
are not able to detect dropped messages in ongoing communica-
tion (R2). Furthermore, FRAMEWORK relies on the functionality
of the Narada Brokering system and adapts the broker to enforce
access regulations, i.e., it cannot be used on already deployed infras-
tructure with well established PubSub protocols (R4). Regarding

authentication, FRAMEWORK relies on a public key infrastructure,
which could be considered inefficient on constrained devices (R5).

SMQTT: The approach of Singh et al. [50] achieves E2E security
by utilizing attributed-based encryption (ABE). Here, the broker (or
a separate key generation system) distributes key secrets to publish-
ers and subscribers depending on their owned ABE attributes. Thus,
the decoupling of senders and receivers is supported by design (R3).

While it would violate the requirement of information security
when the broker is able to access and alter transmitted messages,
with a separate instance for key management, SMQTT is able to
prevent that malicious brokers modify or eavesdrop messages (R1).
This implementation decision also affects the requirement of de-
ployability. Already established brokers could be used without any
changes if a separate key management instance is used. However,
this change complicates the corresponding communication with
involved clients (R4). So far, SMQTT does not consider any coun-
termeasures against dropped or duplicated messages (R2) and the
use of ABE limits its deployability on constrained CPS devices (R5).

PICADOR: Borcea et al. [5] propose a design, where proxy re-
encryption enables the broker to obliviously re-encrypt messages
received from the publishers for every subscriber independently,
i.e., without the broker itself being able to decrypt a message.

This scheme is able to realize sender/receiver decoupling (R3)
and by introducing on-demand secure side channels (realized using
a trusted third party) it targets to deploy required key material with-
out the need of an additionally reachable service (R4). However,
it requires changes to the broker, thus conflicting our deployabil-
ity requirement (R4) and adds a massive overhead on the broker
which has to re-encrypt each message for every connected sub-
scriber (R5). Furthermore, it does not provide any mechanisms
to detect dropping or duplication of messages (R2) and does not
guarantee message integrity (R1).

OPC UA PubSub: The PubSub protocol of OPC UA [37] intro-
duces a trusted third party that manages security keys to achieve
confidentiality on a per-group level. Operators have to assign pub-
lishers and subscribers to groups to enable them to retrieve keys.

OPC UA PubSub fulfils most of our requirements, i.e., applying
encryption and signatures to messages for sufficient information
security (R1), including a sequence number in the message header
and signature for dropping and duplication detection (R2), as well as
not introducing significant overhead (R5). Furthermore, it preserves
the decoupling of senders and receivers as a prime characteristic of
PubSub (R3). However, the introduced trusted third party must be



reachable out-of-band for all publishers and subscribers regularly to
renew key material. Hence, it potentially introduces a large variety
of new attack vectors (R4).

JEDI: JEDI [29] relies on identity-based encryption to implement
E2E information security (R1), while retaining the decoupling of
senders and receivers in PubSub communication (R3).

However, JEDI does not enable the receivers to detect dropped
or duplicated messages as no nonce or counter value is part of the
transmitted packet (R2). Furthermore, similar to OPC UA PubSub,
it introduces a trusted third party that derives security keys for a
specific topic and time frame. This third party needs to be reachable
for the publishers and receivers out-of-band, potentially introducing
new attack vectors (R4). Lastly, while relying on the lightweight
AES-CTR mode for the symmetric encryption itself, the AES key
for each message has to be decrypted via identity based encryption
adding even more overhead (R5).

MQT-TZ: Segarra et al. [49] propose to tackle the problem of
malicious or compromised brokers by confining the broker soft-
ware in a trusted execution environment [31]. While not disrupting
the sender/receiver decoupling (R3), this approach allows to attest
that the broker software is executed as intended, i.e., TLS for the
connection between the broker and the publishers and subscribers
is correctly implemented and the broker does not alter, drop, or
duplicate any messages (R2). This approach is especially promising
when brokers are outsourced to the cloud [26].

However, since TLS does not provide E2E security between au-
thorized publishers and subscribers, MQT-TZ does not prevent
malicious clients that were able to join the PubSub network to
eavesdrop messages of or inject messages into ongoing communi-
cation (R1). Furthermore, trusted execution environments are not
available on every server, i.e., being difficult to deploy (R4), and
introduce a significant overhead on the broker (R5). Additionally,
several attacks on trusted execution environments were shown [47]
rendering its benefit questionable.

MOUCON: Following orthogonal research, Jia et al. [26] identi-
fied different issues in access control capabilities of MQTT brokers
operated in the cloud and proposed MOUCON, which checks the
access rights to a message for every client based on specific policies.

While this approach holds up sender/receiver decoupling (R3)
and is comparatively efficient by only introducing a small overhead
on the broker for policy checks (R5), it requires changes to the bro-
ker, complicating deployability (R4). Furthermore, with MOUCON
applied, still full trust into the broker is required, i.e., the broker is
still able to drop or duplicate packets (R2) as well as read or change
transmitted packets and even inject new messages (R1).

Takeaway: Current approaches for E2E security for PubSub can-
not satisfy all requirements necessary in industrial environments at
once. Related work does not sufficiently solve important requirements
such as information security or deployability. Especially w.r.t. safety
requirements in and the increasing interconnection of CPSs, an ap-
proach covering all of the identified requirements is needed.

5 ENTRUST — E2E SECURITY FOR PUBSUB
None of the currently available protocols meets all requirements
for secure PubSub communication in industrial infrastructures (cf.
Section 3.2). Hence, we set out to develop ENTRUST, our protocol

SubscriberPublisher

Key Server

Broker

0

1 2

Out-of-band communication
In-band communication Topic Key ACL

/a/b

Figure 2: Overview of ENTRUST allowing E2E security in
publish/subscribe systems. Exemplary, the publisher joins
for E2E security using a three step handshake.

allowing key server-based end-to-end security in publish/subscribe
systems. The core idea of ENTRUST is to establish a symmetric
key per topic (or message channel) which can be used to secure
exchanged messages. This topic-specific key is then shared with all
authorized publishers and subscribes of the corresponding topic.

Figure 2 shows an overview of ENTRUST, including an intro-
duced trusted third-party, the key server, which manages the ex-
change of key material and is also connected to the broker as a
PubSub client. The key server holds a pre-shared key (PSK) with
all publishers and subscribers in the PubSub infrastructure and is
tasked with sending specific topic keys to authorized clients which
they can subsequently use to encrypt and decrypt payload transmit-
ted via ordinary PubSub messages. While the PSK, mainly used for
later authentication of the clients, is exchanged out-of-band before
the deployment of the publishers and subscribers (Step 0 , details
in Section 5.1), the exchange of the topic keys requires an elliptic
curve Diffie–Hellman (ECDH) to achieve forward secrecy before
key transmissions (Step 1 and 2 , Section 5.2). After all publish-
ers and subscribers received topic keys from the key server, the
participants can communicate with full E2E protection (Section 5.3).

5.1 Bootstrapping: Out-of-Band Key Exchange
To enable clients, i.e., publishers and subscribers, and key server to
authenticate each other for a subsequent exchange of topic keys,
ENTRUST introduces a unique pairwise shared secret between
each client and the key server. As shown in Step 0 in Figure 2, this
procedure corresponds to an out-of-band communication where a
pre-shared key (PSK) of various length is set on both, the key server
and a new client, which wants to act as publisher or subscriber in
the following. While this mechanism introduces a configuration
overhead, it only needs to be performed once and can be executed
either manually while setting up the client, e.g., configuring the
broker’s IP address, or via automated techniques such as NFC or
QR codes, making the key server aware of a preinstalled PSK on
the client [27, 34]. Thereby, ENTRUST does not require more com-
plicated means, such as PKI infrastructures, to authenticate clients
during operation increasing its efficiency.

As only key server and client possess a specific PSK, they can use
this shared secret to authenticate each other in subsequent steps. To
this end, both entities use the PSK during a subsequent handshake.
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Figure 3: Subscription, handshake, and subsequent topic key
transmission between a client (exemplary a publisher), and
the key server. Here, + indicates a topic wildcard.

5.2 Facilitating a Topic Key Exchange
ENTRUST utilizes the key server to provide a symmetric key per
topic. For message confidentiality (integrity), this topic key is used
by publishers to encrypt (sign) and subscribers to decrypt (verify)
messages on the corresponding topic. To this end, the key server
securely sends the topic key via the PubSub protocol to requesting
clients but ensures that only authorized clients can receive the
key. To build a foundation to transmit topic keys to authorized
clients securely, in ENTRUST every client performs an ECDH with
the key server to generate fresh shared key material. Periodically
refreshing this key material via subsequent ECDHs strengthens
the information security ENTRUST introduces as once leaked key
material does not compromise past or future sessions (forward
secrecy). Subsequently, key server and client use this shared key
material in combination with the PSK from the out-of-band key
exchange to enable secure and authentic transmission of topic keys.

Key Exchange Topic: ENTRUST introduces a specific key ex-
change topic that is used for all communication between key server
and clients (/ENTRUST/keyex/) to establish a secure topic key trans-
mission on top of the existing, unmodified PubSub protocol. Each
client has its own subtopic based on the client ID (/ENTRUST/keyex/
client_id/), which the key server and this specific client use for
individual authenticated and encrypted communication.

To ensure that the broker does not relay all sent messages back
to the sender, ENTRUST separates all communication per direction
in underlying subtopics, i.e., /ENTRUST/keyex/client_id/toKS/
for messages sent from the client to the key server and /ENTRUST/
keyex/client_id/toC/ for communication from the key server
to the client. The key server subscribes to all toKS subtopics, e.g.,
by using a wildcard for the client ID. Correspondingly, each client
subscribes to the toC subtopic designated for its own client ID.

Handshake and Topic Key Negotiation: Figure 3 shows the
handshake and topic key transmission after all entities subscribed
to their designated key exchange topics. To perform topic key trans-
missions using fresh key material (to account for potentially com-
promised keys), key server and client perform a handshake (Step 1 )
before the key server provides topic keys (Step 2 ).

In general, the handshake bases on the well-established elliptic-
curve Diffie–Hellman (ECDH) key exchange, as, e.g., used during a

TLS PSK handshake [13]. To this end, a joining client, e.g., a pub-
lisher intending to publish data on a specific topic, starts to perform
an ECDH key exchange with the key server via the dedicated key
exchange topic for this client (e.g., /ENTRUST/keyexchange/p_01/
for the client with client ID p_01). More precisely, the client sends
an ECDH key exchange request to the toKS subtopic including its
fresh ECDH public key. Then, the key server performs its half of
the ECDH handshake and responds with an ECDH key exchange
response including its calculated ECDH public key. Afterward, both
entities are in possession of a ECDH shared secret to enable subse-
quent secure communication.

Mutual Authentication: To guarantee mutual authentication
between the client and key server, ENTRUST requires both entities
to derive a master secret from the ECDH shared secret in combi-
nation with the PSK exchanged in Step 0 . Therefore, ENTRUST
utilizes HKDF [28] as key derivation function to generate a 64 B
master secret. To this end, HKDF is performed on the concatenation
of the ECDH shared secret, its length, the PSK, and the PSK’s length,
similar as used in the well-established TLS PSK handshake [13]. Fi-
nally, key server and client use the first 32 B of the master secret to
encrypt and authenticate messages from the key server to the client
and the rest of the master secret to protect the communication in
the opposite direction.

Topic Key Retrieval: Once the master secret has been estab-
lished, the client can request the topic key from the key server
for every topic it wants to subscribe or publish to in Step 2 . To
this end, the client publishes encrypted and authenticated topic
key requests, containing the topic it requests the key for, in the
designated subtopic for its communication with the key server. For
encryption, ENTRUST relies on ChaCha20 and for authentication
on a Poly1305message authentication code (MAC) both known for
good performance on constrained devices [8] that are prevalent in
industrial scenarios. Subsequently, the key server checks whether
the specific client is allowed to access the topics for which the client
requested the topic keys using an access control list (ACL). To grant
an authorized client access to a requested topic, the key server
responds to the request with an encrypted and authenticated topic
key response containing the topic and the corresponding topic key.

Secure Key Design: As potentially multiple publishers use the
same symmetric topic key to encrypt messages within a specific
topic and a reuse of an IV with the same key material weakens the
protection inherently, ENTRUST has to ensure that the initialization
vectors (IVs) used for encryption stay unique for all messages. To
ensure this uniqueness, the topic key response includes a publisher-
specific prefix (up to four byte) for all IVs used by this publisher.

Furthermore, from time to time, topic keys need to be renewed,
e.g., when a publisher exhausts its available IVs or operators revoke
the access rights of clients to specific topics. Therefore, clients can
trigger the establishment of new topic keys by sending a topic key
renewal request to the key server. When receiving such a request
or when the key server decides to renew a topic key, e.g., due to
revoked access rights or a timeout, the key server sends topic key
responses containing new key material to all clients. To account for
synchronization issues, e.g., subscribers receiving new key material
before publishers, each key has an ID which publishers add to each
published message and subscribers use to select the corresponding
key material for decryption.
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Figure 4: Data message structure proposed by ENTRUST. It
allows E2E protected communication completely transpar-
ently for any underlying PubSub protocol.

5.3 Communication Protocol
As soon as subscribers and publishers possess the topic key for
a specific topic, they can use this key to communicate securely
benefiting from the E2E protection provided by ENTRUST transpar-
ently on top of the PubSub protocol. In this regard, ENTRUST uses
the symmetric topic key to realize encryption and authentication
for messages exchanged on the corresponding topic. Accounting
for resource constraints prevalent in CPSs, especially in industrial
settings, ENTRUST relies on a combination of the ChaCha20 stream
cipher for encryption and the Poly1305 authenticator to generate
a MAC [8] (as also used for topic key requests and responses in
ENTRUST).

Message Structure: Figure 4 details how ENTRUST allows for
transparent E2E-protected communication using an existing under-
lying PubSub protocol. Additionally introduced metadata, e.g., the
key ID, an initialization vector, and a MAC, are inserted next to the
sent encrypted data as payload within regular PubSub messages.

Message Reliability: Besides the need to provide E2E security
(cf. R1 in Section 3.2), secure many-to-many communication in
industrial CPS scenarios also requires that subscribers should be
able to reliably detect duplication or dropping of messages (cf. R2
in Section 3.2). To enable subscribers to detect such duplication or
dropping of messages, publishers in ENTRUST include a publisher-
specific message counter into each message (reusing the unique
prefix assigned to each publisher to prevent collisions of IVs). Using
this counter, subscribers can reliably detect duplicated messages.
Furthermore, they can reliably detect dropped messages as soon as
the next message from the same publisher arrives. To additionally
allow subscribers to detect dropped messages without relying on
a subsequent message from the same publisher, publishers either
announce at which time they will send the next message at latest
or periodically publish (empty) heartbeat messages [23].

Takeaway:With ENTRUST, the communication in PubSub sys-
tems is fully E2E-secured: from the publishers up to the subscribers.
Thereby, it is transparently deployable without any changes to the
underlying PubSub protocol admitting ENTRUST-enabled clients to
piggyback and use already established PubSub infrastructure.

6 SECURITY DISCUSSION
In this section, we discuss how ENTRUST realizes confidential,
integrity-protected, and authenticated communication between all
authorized clients in a PubSub network and thus meets the design
requirements for E2E security in PubSub communication (especially
R1 and R2, cf. Section 3.2).

To realize confidential communication, ENTRUST relies on per-
topic keys that the key server distributes to all authorized clients
(publishers and subscribers). To this end, the key server authen-
ticates connecting clients using a client-specific pre-shared key

(deployed on clients during their setup) and maintains an access
control list specifying which client should have access to which
topic. Publishers use the topic key received from the key server to
symmetrically encrypt messages using ChaCha20 and subscribers
decrypt received messages accordingly. As only authenticated and
authorized clients as well as the trusted key server possess the topic
key, ENTRUST covers our requirements for confidential and au-
thentic communication (R1). Importantly, the potentially untrusted
broker does not have access to the topic key and thus cannot de-
crypt or modify exchanged messages. With ENTRUST wemove this
necessary trust to the separate key server which interacts securely
with other entities as PubSub client only. Therefore, the key server
must not be operated by potentially malicious cloud providers and
does not require to offer any services directly to the Internet or
production network reducing its attack surface.

As also forward secrecy is a desired property of E2E security
schemes, ENTRUST does not use the pairwise pre-shared keys to
encrypt communication between key server and clients. Instead,
ENTRUST requires clients to perform an ECDH handshake with
the key sever and from that point onward restrict the use of the
pre-shared key to authentication.

To ensure authenticity and integrity for communication between
clients, ENTRUST employs a Poly1305 message authentication
code (MAC). This MAC enables subscribers to reliably detect altered
or injected messages and thus addresses the remaining aspect of
our requirement for information security (R1).

Complementing the requirement of information security, i.e.,
confidentiality, integrity, and authenticity, E2E security for PubSub
communication in industrial CPS scenarios also requires a reli-
able mechanism to prevent or detect the dropping and duplication
of any messages (R2). To enable subscribers to detect duplicated
or dropped messages reliably, ENTRUST introduces a publisher-
specific message counter which is part of every message. After
receiving a message, subscribers can use the message counter to
detect duplicated messages (as the duplicated message would reuse
an old counter value) as well as dropped messages (after the subse-
quent message from the same publisher has arrived). To also assist
subscribers to detect dropped messages if no subsequent message
from the same publisher arrives, publishers include a time offset
into each message to signal at which point in time the next message
from this publisher is to be expected. As CPSs typically communi-
cate periodically, publishers simply can calculate the offset given
their communication frequency but also can prevent exceeding
timeouts of publishers by sending (empty) dummy messages.

Takeaway: ENTRUST introduces secure E2E security for PubSub
communication in CPSs by relying on well established cryptographic
primitives and moving trust from the broker which originally is a
sweetspot for attackers to a key server that only communicates as usual
PubSub client. Thereby, ENTRUST covers all security requirements we
identified for PubSub communication in CPSs.

7 PERFORMANCE EVALUATION
The prevalent resource constraints in industrial CPS scenarios de-
mand an efficient solution for E2E security in PubSub systems (R5).
In the following, we show that ENTRUST is efficient enough to
transparently operate on tightly resource-constrained CPS devices.
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Experimental Setup: For our evaluation, we implemented EN-
TRUST using the MQTT library for Photon [36] and the Arduino
Cryptographic Library [52]. Furthermore, we use X25519 as elliptic
curve for the ECDH and key sizes of 32 B as well an IV size of 8 B for
ChaCha20. We deployed ENTRUST on three resource-constrained
RedBear Duo (ARM Cortex-M3 @ 120MHz) CPS devices, one act-
ing as publisher, one acting as subscriber, and one acting as key
server. Furthermore, we installed a mosquitto MQTT Broker [12]
on a Raspberry Pi 3 (BCM2835 @ 1200MHz). The Raspberry Pi
is connected to a router via Ethernet and the Redbear Duos are
connected via Wi-Fi 4 (802.11n).

With this testbed, we show the performance of ENTRUST for
the different steps of our protocol design, i.e., initial handshake
and topic key exchange (Section 7.1) as well as subsequent com-
munication (Section 7.2). To this end, we measure the runtime of
ENTRUST using the micros() Arduino function. We report on the
arithmetic mean of 30 measurements and show 99% confidence
intervals. Finally, we study the impact of ENTRUST on the size of
transmitted network packets (Section 7.3).

7.1 Handshake and Topic Key Exchange
We study the computation runtime required to perform a single
handshake between client and key server as well as one topic key
exchange. As shown in Figure 5 (left), the initial ECDH between
the client and the key server introduces the same overhead of
about 97ms on both devices (client and key server). The measured
overhead is dominated by the public key operations (93ms) as
well as the MQTT library and underlying system operations for
communication (3.9ms). As this initial ECDHneeds to be performed
only rarely, e.g., when a client starts up, this overhead of less than
100ms to initially bootstrap the secure connection between client
and key server is well acceptable even for large-scaled industrial
CPS scenarios.

In comparison to the initial ECDH performed very rarely per
client, the topic key exchange (TKE) has to be executed more of-
ten: (i) initially, once for every topic a client wants to use, and
(ii) regularly, for each subscribed topic, depending on the frequency
with which topic keys are renewed. Hence, by design, ENTRUST
does not rely on any computationally expensive public key opera-
tions during the TKE and instead utilizes lightweight symmetric
cryptographic primitives.
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Figure 6: Comparison of ENTRUST’s computation runtime
with unprotected communication at publisher and subscriber
split by different message sizes. Chosen lightweight crypto-
graphic primitives allow for low runtime overhead.

Consequently, as we illustrate in Figure 5 (right), the TKE is about
two orders of magnitudemore efficient than the ECDH: The runtime
required for performing one TKE amounts to 4.3ms at the client-
side and 4.4ms at the key server. For both entities, the runtime
is dominated by system calls and the MQTT library. Notably, the
cryptographic operations of ENTRUST only introduce a minor
overhead, i.e., the encryption operation of the topic key request at
the client (0.1ms), the decryption at the key server (0.1ms), and the
corresponding response (key server: 0.1ms, client: 0.1ms) account
for well less than 10 % of the total runtime.

All in all, our evaluation shows that both, the overhead induced
by the initial handshake between clients and the key server as well
as the TKE necessary to regularly exchange encryption keys for
topics, can realistically be performed even by resource-constrained
CPS devices in industrial scenarios.

7.2 Secure Communication
To realize E2E security for their PubSub-based communication,
clients in ENTRUST use the received topic key to en- and decrypt
messages using ChaCha20 as well as Poly1305 to authenticate and
validate messages. In Figure 6, we study the resulting per-message
processing overhead for publishing and subscribing to messages
by comparing the computation runtime of ENTRUST to a baseline,
corresponding to the computation runtime when using the same
PubSub stack without any enabled security features. As we expect
this runtime to depend on the size of transmitted messages, we
perform the measurements for message sizes of 128 B, 512 B, and
1 kB to represent smaller and larger value clusters typically used in
machine-to-machine communication [32].

Applying E2E security using ENTRUST when publishing mes-
sages (left half of Figure 6) introduces an overhead of 67 % (@ 128 B)
to 53 % (@ 1 kB) when compared to the baseline, with a slightly
smaller relative overhead for increasing message sizes. This over-
head mainly stems from encryption and authentication of mes-
sages (0.2ms @ 128 B), as the slight increase of messages sizes
resulting from the security measures (cf. Section 7.3) does not no-
ticeably increase the runtime of the MQTT library and system
functionality. The runtime for other actions that are not affected by
the application of ENTRUST, e.g., data generation, does not change.

Similarly, ENTRUST’s overhead for processing messages at the
subscriber (right half of Figure 6) is dominated by decryption and



verification operations (0.2ms @ 128 B), while we do not observe
an increase for the runtime of system functions and the MQTT
library. Again, for increasing message sizes the relative overhead
of ENTRUST also diminishes at the subscribers.

Overall, the high level of security achieved by transparently
applying ENTRUST to sensitive communication of CPSs only in-
troduces a modest increase in computation time which is well-
manageable even by resource-constrained CPS devices.

7.3 Message Sizes
While generally designed to be lightweight and to only result in
small communication overhead, ENTRUST still has to deal with
the increased complexity of security functionality (in general). In
particular, ENTRUST (i) introduces new message types and (ii)
slightly increases the size of existing messages, e.g., by introducing
a MAC and a per-publisher message counter, to realize its security
functionality. In the following, we quantify and discuss the resulting
impact on message sizes in more detail.

To bootstrap a secure connection between client and key server,
ENTRUST requires an ECDH. Thereby, the exchange of the ECDH
public keys requires two messages with a size of 34 B each.

For the subsequent and periodic topic key transmissions, EN-
TRUST introduces an encrypted and authenticated topic key re-
quest message, which has a minimum size of 28 B, amongst others
consisting of an initialization vector and an authentication tag. Its
eventual size depends on the length of the topic ID for which the
client requests the key. The authenticated and encrypted topic key
response has a minimum size of 60 B and also grows with the length
of the topic ID the transmitted key corresponds to.

For the actual transmission of PubSub messages, ENTRUST adds
a small overhead of 42 B to eachmessage, including the initialization
vector used when encrypting the message, an authentication tag, a
per-publisher message counter, and the optional time offset until the
next message is sent. While machine-to-machine messages often
are JSON-encoded and therefore have a size of several bytes [32],
the overhead added by ENTRUST in comparison is marginal.

Takeaway: ENTRUST provides efficient E2E security for PubSub
communication in CPSs at the cost of a few additional small packets for
a lightweight handshake as well as a modest increase in total message
size for regular PubSub messages. Especially for industrial settings
with large JSON-encoded payloads that demand confidentiality and
integrity for various reasons, these overheads are well-acceptable.

8 CONCLUSION
The shift from isolated production and manufacturing deployments
towards increasingly interconnected industrial networks—where
many-to-many communication between CPSs now constitutes pro-
duction’s backbone—requires to fundamentally rethink communi-
cation security. So far, the broadly used PubSub communication
scheme does not provide highly relevant security features for in-
dustrial deployments. Most importantly, there is no support for E2E
security, exposing both security and safety of industrial deploy-
ments to the peril of misconfigured or malicious message brokers.

In this paper, we introduced ENTRUST, a scheme for key server-
based end-to-end security in publish/subscribe systems which
ensures confidentiality, integrity, and authenticity of exchanged

messages as well as offers protection against dropping and duplica-
tion of messages. Thereby, it solely relies on the underlying PubSub
protocol for communication and thus does not introduce any addi-
tional directly reachable services, which could increase the number
of attack vectors in an industrial deployment.

ENTRUST does not require any changes to the message broker,
thus promising easy deployability, and retains sender/receiver de-
coupling, which is an inherent part of PubSub communication to
realize efficient many-to-many communication, especially in indus-
trial CPS scenarios. To achieve all this and still account for prevalent
resource constraints in industrial deployments, we solely rely on
efficient cryptographic primitives such as ChaCha20-Poly1305.

With our work, we showed that it is indeed feasible to operate
ENTRUST on resource-constrained CPS devices. The overhead
for receiving key material from ENTRUST’s trusted key server
is marginal, while the extra effort required for encrypting and
decrypting messages at publishers respectively subscribers is well
invested considering the tremendous security benefits of ENTRUST.

For future work we envision to further improve the performance
of ENTRUST, e.g., by using even more performant cryptographic
primitives. For example, although ChaCha20 has shown to be very
efficient on constrained CPS devices, AES might be more efficient
when using hardware acceleration [40]. Furthermore, the authen-
tication of messages can further be optimized, e.g., by utilizing
progressive message authentication codes [1].

By proposing ENTRUST, we show that is possible to efficiently
and effectively retrofit existing PubSub communication in industrial
CPS deployments with end-to-end-security and thus allow modern
CPSs to securely realize many-to-many communication.
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