
A Comprehensive Approach to Privacy in the
Cloud-based Internet of ThingsI

Martin Henzea,∗, Lars Hermerschmidtc, Daniel Kerpenb, Roger Häußlingb,
Bernhard Rumpec, Klaus Wehrlea

aCommunication and Distributed Systems, RWTH Aachen University, Germany
bSociology of Technology and Organization, RWTH Aachen University, Germany

cSoftware Engineering, RWTH Aachen University, Germany

Abstract

In the near future, the Internet of Things is expected to penetrate all aspects of
the physical world, including homes and urban spaces. In order to handle the
massive amount of data that becomes collectible and to offer services on top
of this data, the most convincing solution is the federation of the Internet of
Things and cloud computing. Yet, the wide adoption of this promising vision,
especially for application areas such as pervasive health care, assisted living,
and smart cities, is hindered by severe privacy concerns of the individual users.
Hence, user acceptance is a critical factor to turn this vision into reality.

To address this critical factor and thus realize the cloud-based Internet of
Things for a variety of different application areas, we present our comprehen-
sive approach to privacy in this envisioned setting. We allow an individual user
to enforce all her privacy requirements before any sensitive data is uploaded
to the cloud, enable developers of cloud services to integrate privacy function-
ality already into the development process of cloud services, and offer users a
transparent and adaptable interface for configuring their privacy requirements.

Keywords: Privacy, Cloud Computing, Internet of Things, Model-driven
Development, User Acceptance

1. Introduction

The proliferation of the Internet of Things (IoT), which enables the world
wide interconnection of an incredible large amount of smart things, allows to
effectively realize systems that significantly improve everyday’s life, ranging from

IThis is a significantly extended and rewritten paper based on the work User-driven Pri-
vacy Enforcement for Cloud-based Services in the Internet of Things by Henze et al.
presented at the 2014 International Conference on Future Internet of Things and Cloud.

∗Corresponding author. Tel.: +49-241-80-21425
Postal address: Informatik 4 (COMSYS), Ahornstr. 55, 52074 Aachen, Germany
Email address: henze@comsys.rwth-aachen.de (Martin Henze)

Authors’ version of a manuscript that was accepted for publication in Future Generation
Computer Systems. Changes may have been made to this work since it was submitted for
publication. Please cite the published version: http://dx.doi.org/10.1016/j.future.2015.09.016

c© 2015. This manuscript version is made available under the CC-BY-
NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/

pervasive health care and assisted living to smart cities [1, 2]. However, these
smart devices often suffer from extremely constrained processing and storage
resources, and a limited energy budget, as they are often powered by battery. In
order to overcome these limitations, one of the most promising approaches is to
interconnect the IoT with the cloud and thus benefit from the elastically scalable
and always available resources provided by the cloud computing paradigm [3–9].
The cloud-based Internet of Things simplifies storage and processing of collected
data, allows using the same data in multiple services, eases the combination of
data from several users, and supports user mobility. At the same time it prevents
information fragmentation over several databases.

Although the necessary technologies for both, IoT and cloud computing,
are readily available today, the interconnection of these two paradigms in ap-
plication areas such as assisted living and public mobility assistance is gravely
hindered by severe privacy concerns of individual users [2, 10–12]. In order to
develop such a system that is accepted and hence employed by a wide range of
users, it is of up-most concern to ensure users’ control over their data. Notably,
an individual user might still want to rate, e.g., in the context of pervasive
health care, health higher than privacy in case of an emergency. For this, it is
crucial to anchor privacy aspects of individual users within the system.

However, cloud services are typically not developed solely for one specific
user, but instead target a large group of heterogeneous customers [13]. Hence,
it is infeasible to decide on all privacy aspects already during the development
of a cloud service as privacy by design might suggest. Instead, in order for users
to accept such a service, privacy choices must be left to the user. This, however,
significantly increases the complexity of designing and developing cloud services
and at the same time puts a tremendous burden on the user who often has
no awareness of the (technical) consequences of her privacy choices. Therefore,
we strive to encompass both domains, end-user’s as well as service provider’s
perspective with our comprehensive understanding of cloud-based IoT services.

In this paper, we present UPECSI, our solution for User-driven Privacy
Enforcement for Cloud-based Services in the IoT. UPECSI takes a comprehen-
sive approach to privacy for the cloud-based IoT by providing an integrated
solution for privacy enforcements that focuses on individual end-users and de-
velopers of cloud services at the same time. UPECSI consists of several technical
components and organizational processes. More specifically, with UPECSI, we
present the following core contributions: i) individual, user-driven enforce-
ment of privacy requirements already before any potentially sensitive data is
handed over to the cloud, ii) a novel technique for designing and implementing
cloud-based services that integrates privacy functionality into the development
process, and iii) an easy to understand, flexible, and transparent approach for
users of different privacy expertise to configure their individual privacy set-
tings. These contributions of our comprehensive approach to privacy in the
cloud-based IoT allow us to lay the foundation for bringing the IoT and cloud
computing together in a user-accepted fashion.

This paper is structured as follows: In Section 2 we describe and discuss the
application areas and network setting of our envisioned scenario. Based on this,

2

we derive and present privacy concerns of end-users and privacy considerations
of service providers that arise in a scenario like this in Section 3. We present
important related work in Section 4. In Section 5, we formalize the challenges
and requirements for realizing privacy-preserving cloud-based services for the
IoT. To address these challenges and requirements, we present the main contri-
bution of this paper, the design and implementation of UPECSI, in Section 6.
We discuss in detail how this addresses and overcomes the identified challenges
in Section 7. Finally, we conclude this paper in Section 8.

2. Scenario

The following section outlines our envisioned scenario. We address both
the societal and, especially, technical point of view by discussing exemplary
application areas from the contexts of assisted living and interactive mobility
assistance in public spaces. Driven by these application areas, we derive and
present an overview of the underlying network scenario of our system.

2.1. Application Areas

Our two subsequently presented application areas focus around a 75-years-
old widowed female retiree, who, besides tending her close relationships to family
members and friends, appreciates having a wide range of options to live inde-
pendently. In the first application area, assisted living, we consider this lady
controlling her room/building automation related systems, e.g., screening me-
chanical, lighting, heating/ventilating/air conditioning (HVAC), and security
systems along with monitoring her vital signs by a number of unobtrusive sen-
sors in her apartment. These sensors deliver information to the cloud offering
fast access to, for instance, family members and third parties such as medical
personnel (e.g., doctors), health care providers (HCPs), or technical staff (e.g.,
building service engineers).

In the second application area, public mobility assistance, we envision this
lady being comfortable with seamlessly taking an assisted living service with her
on her portable and/or wearable devices. By doing so, this service takes a proac-
tive role as a “personalized companion” by providing seamless mobility chains
for aged users. Such a service enables people with limited mobility traveling
independently by combining technical assistance systems (e.g., via smartphones
and devices such as Google Glass) and public transportation: The entire route
is covered from the starting point to the destination, including not only the
public transport services (timetables of buses, trams, taxi services etc.) but
adding additional service value by including information on the local and re-
gional conditions of the route because existing barriers (stairs, etc.) might be
recorded, classified, and cataloged with their position data. Whereas today such
services are already in development which aim primarily at assisting indepen-
dent living of the elderly in their preferred environments [14, 15], we deem it
necessary to add additional benefit to such concepts by i) integrating privacy
enforcement (e.g., concerning mobility patterns, fingerprints etc.), ii) offering

3

more functionality in terms of adaptable and transparent configurations (to the
end-user as well as further stakeholders, e.g., including end-user’s relatives and
other affiliated persons, as well as other trusted third party actors), and, finally,
iii) generating higher user acceptance.

Our envisioned scenario is influenced by social forces such as aging (west-
ern) societies and the therefore increasing role of technology in supporting for-
mal and informal care/assistance. Focussing on older life as well as current
and, especially, future needs for health and social care, we have to consider
the changing social structure of older life [16]. Departing from general demo-
graphic developments (e.g., increasing share of people aged 65 years or above
in the total population and longer span of “older” life phases due to rising life
expectancy), aging societies have to face inextricably linked pressing forces. On
the one hand, they have to cope with economic frictions (expectations about
the quality of health care systems stemming from certain standards of living vs.
financial constraints and shortage of skilled labor in the public health services
sector) as well as eminent societal processes on the other hand. In this context,
some of the most important societal changes to be highlighted might be singu-
larization (increasing number of the elderly un-/deliberately living alone with
their families/relatives distributed over large geographical areas due to increased
mobility in society), differentiation (e.g., not one common understanding but
many individualistic approaches of how health and social care should be pro-
vided), and changing gender roles (due to “feminization of aging” indicating at
the increasing number of women in old and, especially, very old age groups).

Hence, our overall scenario with its application areas serves as adequate ex-
ample to derive design requirements for our system to be user-accepted and
provides us with a promising evaluation setting by keeping in mind the differ-
entiation and variability of old/very old age, i.e., including different age cohorts
with a plurality of norms, consumer/consumation habits, and technology expe-
riences/knowledge. However, our technical foundations are applicable to much
broader contexts ranging from building management systems over intelligent
transportation systems to smart manufacturing.

2.2. Network Scenario

Based on our application areas, we derived the following network scenario for
realizing cloud-based services for the IoT which is depicted in Figure 1. As we
focus on the privacy aspects of the integration of the IoT with cloud computing,
our network scenario follows a user-centric view. Each user (U) of our system
owns and thus operates one or more IoT devices (D), often also referred to
as smart objects. Following the definition of Gubbi et al. [17], we consider
IoT devices that sense information from the environment, interact with the
physical world, and – most importantly – allow communication using traditional
Internet standards. Typical examples for IoT devices in our application areas
range from sensitive floors for movement monitoring and fall detection in home
environments and smart textiles (e.g., shirts, wristbands, or shoes) monitoring
various vital parameters and connected to emergency notification systems to

4

Figure 1: An individual user (U) operates one or more IoT networks (N). The IoT devices
(D) in these networks send data to the cloud via a gateway (GW). The cloud stores data in
different databases and provides it to services (S), as well as emergency services (ES), which
are provided by service developers (SD) and were authorized to access data by the user.

advanced devices capable of monitoring specialized implants, such as artificial
cardiac pacemakers (ACP).

These IoT devices typically build upon embedded platforms to reduce pro-
duction costs and hence facilitate deployment. As such, they often suffer from
limited storage and processing resources. Especially in mobile settings, they
furthermore have to cope with limited connectivity and – as they are often bat-
tery driven – a limited energy budget. These limitations are addressed by the
cloud-based IoT, where the IoT is interconnected with the cloud [3–9]. Given
that, the core idea is to upload all sensed data to the cloud, where it is stored
persistently. The user can then authorize specific cloud services to access and
operate on her data and thus realize the wanted range of functions. Notably, all
functionality that operates on IoT data is realized in the cloud, mainly because
the design of the cloud-based IoT aims to maximize availability of data and
services. However, in the case of a (temporary) connection disruption between
an IoT device and the cloud, data cannot be pushed to the cloud immediately.
To overcome this issue, the IoT device can cache the data locally and upload it
to the cloud once the connection has been reestablished. Still, the cloud-based
IoT allows to access all data that is already stored in the cloud and operate
services on it even during a disrupted connection between IoT device and cloud.
Hence, the cloud-based IoT significantly increases availability when compared to
solutions that propose to store and process IoT data locally (and hence become
completely unavailable in case of connection problems).

When realizing the cloud-based IoT, the IoT devices of one user are typically
grouped into one or multiple logically or even physically separated IoT networks
(N), e.g., a home network consisting of assisted living devices and a body area
network connecting unobtrusive health care devices. All these networks are con-
nected to the Internet and hence the cloud using a dedicated gateway (GW).
In the assisted living context, this would typically be a home router while for
public mobility assistance the user’s smartphone could act as the gateway. We
define the combined network of all IoT devices and networks of a single user as
her privacy sphere. The user trusts the devices and other network participants

5

within this sphere but does not want any potentially sensitive information col-
lected within this context to be available to unauthorized third parties. For
this, the user has to employ standard network security measures for home and
IoT networks, e.g., wireless channel encryption.

Data that is sensed in the networks of a user is forwarded to the cloud
via the dedicated gateway. The cloud stores the data persistently and makes
it accessible to services (S) and emergency services (ES). These services are
created by service developers (SD) who implement the functionality of a ser-
vice. Additionally, they may implement supporting functionality, e.g., billing
or elastically scaling with increasing load. These services are then operated by
service providers. We assume that a large number of users, service developers,
and service providers participate in this setting, which leads to a multi-tenancy
scenario with all its privacy implications.

To be able to securely identify the individual technical entities in this network
scenario, we assume that each technical entity (i.e., gateway, cloud, service,
emergency service) is equipped with a public key certificate that certifies this
entities’ identity. This requires the existence of a public-key infrastructure with
one or more trusted certificate authorities. These could, e.g., be operated by a
trusted third party such as a non-profit organization or government agency.

The described network scenario understandably raises severe privacy con-
cerns of users, as potentially sensitive data is outsourced to the cloud. It ad-
ditionally requires privacy considerations by service providers, e.g., in order to
meet data protection standards demanded by law. We will analyze and discuss
these in more detail in the following section.

3. Privacy Concerns and Considerations

When realizing and implementing a scenario as described above, in which
potentially sensitive data collected by IoT devices is outsourced to the cloud,
different privacy aspects have to be considered. In the following, we present
and discuss these aspects in more detail. For this, we further divide them into
privacy concerns of end-users and privacy considerations of service providers.

3.1. Privacy Concerns of End-users

The data collected by IoT devices often consists of sensitive information
that unauthorized third parties might be interested in [2]. For example, as one
of our application areas is (public) mobility assistance, information collected
by a car-based telematics system might be extremely valuable for insurance
companies, as this knowledge could be used to increase a person’s fee or even
deny a new contract [18]. Additionally, not only the sensed data itself but also
corresponding meta information might be considered sensitive [19], especially
when thinking of location privacy [20], where location fixes and/or time stamps
collected by GPS, wireless networks, or NFC tags are considered important
meta information. Hence, users often do not want to reveal the data collected
by their IoT devices to any third parties.

6

Even more privacy concerns and issues arise when outsourcing this data to
the cloud. The major concern of end-users in this setting is the perceived loss of
control over data when it is outsourced to the cloud [11, 12]. Hence, providers
of cloud-based services must explicitly commit themselves to guarantee confi-
dentiality and protection of the stored and processed data, because otherwise,
an adoption barrier consequently is likely to appear for the data owner due to
her individual concerns. Such individual concerns mainly result from the fact
that there is no control or at least transparency over the access to this data and,
hence, data might be handed over to third parties or misused for unintended
purposes [12]. Due to these concerns, end-users ultimately tend to refrain from
using cloud-based services for (highly) sensitive data such as health-related in-
formation, for instance stored and shared by cloud-based personal health records
(PHRs) systems [21].

On a more general scale, people surveyed tend to declare their expectations
about reasonable protection of their data, that legislation is adhered to, and
that they should be informed about when and for what purpose their data
is used [22]. This is one emphasize on the importance of including the user
within privacy research, especially by providing transparency. However, almost
consistently and further complicating implementation concepts of cloud-based
systems, such interviewees rashly declare to handle their data on the Internet
as sparingly as possible and just to rarely give away sensitive data such as bank
account information or credit card numbers. In this context, a discrepancy
between expressed attitudes and factual behavior might be observed similar to
the one that accords to surveys concerning pro-environmental behavior: albeit
people surveyed are clear about the fact that giving away sensitive data is always
critical, the risk is quite often taken if there is at least a small but immediate
advantage such as, e.g., faster order procession or a discount in the case of online
shopping [23, 24]. Finally, such observations of empirical discrepancies between
general cloud-related user attitudes and behavior, as well as users’ willingness
to trade-in privacy in health-related contexts, e.g., in case of emergencies or
quality of life in a nursing home [25] clearly stresses awareness about privacy
as not being a fixed norm. This furthermore emphasizes the importance of
including sociological sound concepts of end-users within privacy research.

3.2. Privacy Considerations of Service Providers

Notably, considering end-user’s privacy concerns is not only important for re-
searchers, but at least equally relevant for service providers. If service providers
do not address the above depicted concerns adequately, they have to expect
severe undesired consequences, ranging from the complete nonacceptance of
their service to extremely costly lawsuits [2, 26]. Additional to these lawsuits,
which mainly target private law issues between individual end-users and service
providers, service providers also have to follow several legal restrictions. This
becomes especially important when the realization of service functionality is out-
sourced to the cloud [12, 26]. One legal restriction that is considered extremely
challenging with respect to the cloud and that also raises severe concerns of

7

end-users, is the transfer, storage, and processing of customer data across leg-
islative boundaries (which often happens completely unnoticeable) [27–30]. For
example, in many countries of the European Union it is forbidden by federal
law to store tax and accounting records as well as corporate documents out-
side the respective jurisdiction of these countries [31]. Another legal restriction
is a recently proposed new data protection regulation in the European Union
known as “the right to be forgotten” [32]. This right states, in principal, that
information about an individual person has to automatically be deleted after a
certain period of time. Implementing the right to be forgotten in a technical sys-
tem, especially in the context of cloud computing, is considered as an extreme
challenging task [12, 32]. Especially for adhering to legal requirements, service
providers depend on support of the cloud providers they make use of to realize
their services [12, 33]. Hence, service providers do not only have to care about
the privacy requirements of their customers but additionally become customers
with privacy requirements themselves as soon as they utilize the cloud for their
services.

As we already discussed earlier when considering end-users’ privacy con-
cerns, the service provider has to lay out all usage of customer data in order
to satisfy the user demand for transparency. Whereas a service provider pursu-
ing the development and marketing of an application usually decides at design
time on the information processed by the application, there is no such solution
capturing users privacy requirements at design time. Descriptions of such appli-
cations’ privacy policies are developed by specialized lawyers or companies’ legal
departments, with such personnel having to interview the developers in order
to get information about the processed data. In this regard, changing derived
policies is not a common, or at least willingly accepted practice because such
changes have to be signed off by legal experts and communicated to users again.
Furthermore, as human communication is error prone [34], derived policy de-
scriptions from developer interviews are often formulated very defensive, so that
potential lawsuits filed by users might not be successful even if the data han-
dling deviates from the developer-intended and described behavior [35]. This
lack of precise, up-to-date information about the data processing again leads to
uncertainty and non-transparency for the users.

Concluding our consideration of end-users’ and service providers’ privacy
considerations, we sum up that the development of a service adaptable to users’
individual needs is more complex then developing a service for a consistent group
of predefined users with fixed privacy requirements. This even more stresses
the importance of our approach which supports developers in building software
products adjustable to users’ privacy needs in order to bring the advantages of
privacy by design to software products and the software development process.

4. Related Work

In order to address individual parts of the above presented privacy concerns
of end-users and privacy considerations of service providers several approaches
have been proposed by the research community. We group our description and

8

discussion of this related work into four categories. First, we discuss approaches
for securely outsourcing data to the cloud. Based on this, we present solu-
tions for preserving privacy in the IoT and cloud computing. Then, we give an
overview over the field of privacy policy languages. Finally, we introduce the
model-driven development approach and its applications.

4.1. Securely Outsourcing Data to the Cloud

In recent years, the field of securely outsourcing data to the cloud, espe-
cially data collected by large numbers of comparably small devices, has spawn
significant interest in the research community.

A large number of approaches aim at securing health data when it is out-
sourced to the cloud. One of the first approaches in this direction was proposed
by Lounis et al. [36]. In their work, they particularly focus on guaranteeing con-
fidentiality and integrity of outsourced medical data with minimum management
and processing overheads. Thilakanathan et al. [37] proposed a platform that
realizes mobile telecare by allowing doctors to remotely monitor patients. For
this, they rely on the cloud as a central data storage which requires them to
take special care of security, confidentiality, and access revocation. In a simi-
lar context, Li et al. [38] and Liu et al. [21] proposed approaches for realizing
the scalable and secure sharing of personal health records (PHRs) using the
cloud. In order to secure the health records in this setting, they make use of
attribute-based encryption respectively signcryption.

On a more general scale, other researchers focus on securely outsourcing
general-purpose sensor data to the cloud. The work of the SensorCloud project
[3, 5, 7] aims at protecting the sensor data already within the sensor network, i.e.,
before it is uploaded to the cloud. The operator of the sensor network may then
select specific cloud services and allow them fine-grained access to individual
parts of her sensor data. As this requires the cloud services to realize and
implement the necessary security functionalities to verify and decrypt sensor
data, the sensor cloud security library has been proposed as an abstraction
of these security functionalities [39]. Similarly to the approach taken in the
SensorCloud project, Pooja et al. [40] also realize the protection of sensor data
already within the sensor network. In order to further increase the security of
outsourced data, they make use of two separate clouds for storing the encrypted
sensor data respectively the keying material needed for decryption.

All these approaches consider security aspects when outsourcing data to
the cloud. However, they mainly focus on providing confidentiality and access
control. Hence, additional work is required in order to fully meet the privacy
requirements identified in Section 3 when outsourcing data to the cloud.

4.2. Preserving Privacy in the IoT and Cloud Computing

Solutions for preserving privacy have been proposed in both domains, IoT
and cloud computing, and mainly focus on individual application scenarios. In
the context of the privacy-preserving utilization of medical data, e.g., by clinical
researchers, Molina et al. [41] present a solution for the privacy-preserving com-
putation of statistics on health care data in the context of the IoT. Similarly,

9

Yang et al. [42] address the challenge of privacy-preserving medical data sharing
in the context of cloud computing. In the context of smart home automation
systems, risk driven approaches have been proposed to preserve privacy when
utilizing the IoT [43] and the cloud [44]. In order to preserve privacy when
outsourcing data to the cloud, a variety of solutions have been proposed. These
range from annotating data with fine-grained privacy obligations that impose
restrictions on where and for how long data is allowed to be stored [12] over
utilizing information flow control for enforcing location requirements [45] to the
utilization of tamper-proof hardware components in order to realize the privacy-
aware storage and processing of data in the cloud [46].

The referenced approaches present very promising ideas for preserving pri-
vacy in the IoT and cloud computing. However, they mostly focus on specific
application scenarios and selected aspects of privacy. To the best of our knowl-
edge, there is no comprehensive effort for providing privacy in the combination
of the IoT and cloud computing that supports users and service developers in us-
ing and designing services in a privacy-aware way by taking the various aspects
of privacy as discussed in Section 3 into account.

4.3. Privacy Policy Languages

To express users’ privacy requirements and privacy policies in a machine-
readable way, several approaches have been proposed in the context of access
control systems. Karjoth et al. [47] developed a privacy policy model as a basis
for an access control system which respects user consent and obligations. P-
RBAC by He, Ni et al. [48, 49] is an extension of the Role Based Access Control
model with privacy policies based on data handling purposes and obligations.
For expressing users’ data distribution policies, Spillner et al. [50] proposed the
textual language FlexDDPL.

Notably, the SPARCLE Workbench [51] transforms privacy policies from
natural language to XACML [52], a standard for expressing access control poli-
cies, or P-RBAC and back. This is presented as useful for policy makers, audi-
tors, and managers [53] but not for service developers, as they need a compact
and comprehensive language, which adopts known concepts of their domain [54].
Trabelsi et al. [55] developed the PrimeLife Privacy Policy Language (PPL),
which extends XACML to express users’ and service providers’ privacy policies.
They also implemented a user agent, which compares these policies and in case
of a mismatch, asks the user if she would like to adjust her policy. All these ap-
proaches are well suited to express privacy policies, but they are not integrated
within the service development process.

From a software development perspective Colombo and Ferrari [56] uti-
lized UML to develop the Privacy-aware Modeling Language (PaML), which
allows modeling and analysis of systems with purpose full data usage control.
For use in the early development phase Jutla et al. [57] extended UML Use
Case Diagrams with privacy measures or services like Notice and Agreement,
Pseudunymization and Anonymization. These approaches assume users’ par-
ticipation during the design process to enable choice, which is true for business
applications, but not for our end-users centered scenario.

10

4.4. Model-driven Development

The model-driven development (MDD) approach [58] proposes to use mod-
els instead of general purpose programming language code, which are then used
to generate parts of the software [59]. This allows to increase the productivity
of the software development process by rising the layer of abstraction during
programming and hence concentrate on concepts rather then technical details.
A modeling language used in MDD and beyond that during software design is
the Unified Modeling Language (UML) [60]. As UML is a graphical language
its use as a language during development is limited. To overcome these short-
comings the UML/P [61, 62], an adoption of the UML for programmers has
been developed.

To realize the MDD approach tools which work on models to process, ana-
lyze, and transform them are needed. MontiCore [63] and Xtext [64] are frame-
works which support building such tools for textual modeling languages. On-top
of MontiCore, tools for processing UML/P [65] and generating program code
have been developed. We build upon these tools to realize the Privacy Devel-
opment Language which we present in Section 6.1.1.

To use modeling techniques in specific problem domains, several domain spe-
cific languages (DSL) have been introduced [66]. Related to this work, extensive
work on security modeling has been done [67] which primarily focuses on role
based access control [68, 69]. Although access control is an impotent part of
implementing privacy policies, these modeling languages do not support to fully
model users’ privacy.

5. Problem Statement

Motivated by the need and high demand for integrating the IoT and cloud
computing [9], especially in application areas such as assisted living and public
mobility assistance (see Section 2), we strive at realizing a tight interweaving
between the two technical paradigms. Notably, besides an impressive amount of
technical challenges in doing so [2, 16], the adoption of such a system, particu-
larly in the above mentioned application areas, is severely hindered by prevalent
privacy concerns [2, 10–12, 33]. As we have shown in Section 3, these concerns
do not only involve end-users, i.e., natural persons, but also – at least equally
important – are a huge deal breaker for providers of services that operate on
IoT data in the cloud. In order to surmount these inherent concerns, we have
to shift the choice of data usage from service providers and developers to the
individual users and offer them a transparent guarantee that this choice will be
accepted and adhered to [33]. Hence, a system that aims at successfully inte-
grating the IoT and cloud computing in privacy-critical application areas such
as assisted living and public mobility assistance has to fulfill the following core
requirements:

Data security: The access to data has to be secured and only be controllable
by the owner of this data. However, the security mechanisms have to be

11

Figure 2: High-level overview of the interaction between the three core contributions of our
solution for User-driven Privacy Enforcement for Cloud-based Services in the IoT (UPECSI).

flexible enough to account for spontaneous mind changes about privacy
when users are in physical danger.

Transparency by design: Privacy has to be integrated into the development
process of a cloud service. Most importantly, this includes the documen-
tation of data usage already during the design and implementation of a
cloud service in order to improve transparency of data usage for the user.

Efficient privacy-aware development: In order to reduce the additional ef-
fort needed for enhancing cloud services with privacy capabilities, we have
to provide support for engineering privacy into the service and ease the
review of this functionality.

User-controlled data usage and handling: The choice and control over the
usage and handling of data has to be shifted from service providers and
developers to the individual end-user.

Adaptable user-control: We have to account for different privacy expertises
of the envisioned end-users and thus provide an adaptable user-control
mechanism. This allows for simplification of complex privacy considera-
tions for privacy novices, while at the same time enables a fine-grained
control for privacy experts.

In order to meet these requirements when integrating cloud computing and
the IoT, related work provides valuable insights and building blocks. However, in
order to meet all these requirements, as well as to address the privacy concerns
and considerations as discussed in Section 3 when combining IoT and cloud
computing, additional effort is required. Thus, the design and realization of a
system for user-driven privacy enforcement for cloud-based services in the IoT is
still an unsolved research challenge. Most notably, it is crucial to focus on both
the users and developers of an IoT/cloud service. In this paper, we address this
research challenge by presenting a comprehensive – i.e., focusing on end-users
and service developers – approach for privacy-enabled service development in
the cloud-based Internet of Things.

6. User-driven Privacy Enforcement for Cloud-based Services in the
IoT

In order to address the above mentioned privacy concerns and considera-
tions, as well as to meet the core requirements for a system that integrates

12

Figure 3: Privacy Enforcement Points (PEP) encrypt all data before it is send to the cloud.
Each Service provides a Privacy Policy (PP), Data Usage Monitoring (M), and Audit (A)
information to a trusted third party (TTP). The TTP reviews the information from all services
and provides default Privacy Configurations (PC) to the user, who views these using her
Interface (I) to finally configure her PEP to grant a specific service access to her data.

the IoT and cloud computing in privacy-critical application areas as formu-
lated in our problem statement, we present the design and implementation of
UPECSI, our approach for User-driven Privacy Enforcement for Cloud-based
Services in the IoT. While designing and implementing UPECSI, we focus on
the agreed requirements for privacy enforcement, which are notice, consent, self-
determination, adequate security, and purposeful use [26]. By interacting with
the user – which provides transparency – we realize notice, consent, and self-
determination. In order to realize adequate security and purposeful use, we rely
on technical mechanisms.

Our design and implementation of UPECSI consists of the following three
core components as depicted in Figure 2: i) Model-driven Privacy, as a novel
software development design technique which allows the easy integration of pri-
vacy functionality into the development of cloud service, ii) Interaction with the
User in order to provide transparency for users of different privacy expertise,
and iii) Privacy Enforcement Points, which reside on the IoT network gateways
and enable the user to enforce her privacy and security requirements when her
potentially sensitive data is outsourced to the cloud. On a high level, these
core components interact as follows: Model-driven Privacy allows us to auto-
matically retrieve information from the development process and generate an
interactive user-configurable, service-specific privacy policy. This information
is then consulted to interact with the user and hence derive an individual pri-
vacy configuration. Finally, the individual privacy configuration instructs the
Privacy Enforcement Point on how to enforce this specific user’s privacy.

In Figure 3 we provide a more detailed overview of UPECSI. We illustrate
the core components and their interconnection. First, with the novel software
development design technique Model-driven Privacy, we can automatically de-
rive a service-specific privacy policy (PP). A trusted third-party (TTP) audits
the correct implementation of a cloud service and the data usage monitoring
(M) based on audit information (A) which we provide based on the informa-
tion given by the service developer during the development process. If the user

13

authorizes a service access to the data collected by her IoT network, she can
review the audited policy together with a default privacy configuration (PC)
recommended by a trusted third party on her interface (I) (e.g., a smartphone
or web browser). On her interface, the user takes the decision whether and un-
der which conditions she allows a service to access her data. By this, we realize
user consent. Finally, the Privacy Enforcement Points (PEP) enable the user to
control the access to her potentially sensitive data based on the user’s decision.
This allows us to guarantee user-adequate security and consent.

In the remainder of this section, we present and explain the core compo-
nents of UPECSI, model-driven privacy, interaction with the user, and privacy
enforcement points, in more detail.

6.1. Model-driven Privacy

Considering privacy during service development requires additional effort
from the service developers and potentially leads to more complexity. One
approach to reduce complexity and ease the developer’s job is to rise the ab-
straction of the programming language.

As part of UPECSI, we introduce the Privacy Development Language (PDL)
in order to allow cloud service developers to describe their privacy considerations
while at the same time having object oriented programming elements such as
classes and methods. This way, we interconnect the service’s data model and
privacy description during service development. As stated earlier, it is necessary
to enforce access control on users’ data when handing it over to a service. A
model written in PDL expresses this user data structure along with information
about the data usage within the service. This information is used to provide
the user with as much details on the usage of her data as possible to enable an
informed decision about the privacy configuration she employs for her data. We
defer the description of the end user’s interface to Section 6.2 and focus now on
the developer, who uses the PDL.

To realize the PDL, we extend UML/P [61, 62, 65], a developer-friendly
version of UML for modeling data structures and methods in a Java-like syntax.

Following Pearson’s “top six” for software engineers [26], we identified Pri-
vacy Policy as well as Monitoring Data Usage and Auditing Data Processing
as mandatory for services to meet users’ privacy demands. These measures are
highly dependent on the data structures and methods used within the service.
We use the information modeled in PDL to automatically derive the privacy
policy and monitoring of data usage. Following, we describe the generation of
these parts from the PDL and the course of auditing the processing of data.

6.1.1. Privacy Policy

Commonly, a privacy policy is composed of service specific information and
general liability disclaimers, required for every service and provided by the legal
division of the service provider. As noted before, the service-specific information
is often very vague, due to the lack of more precise information from developers.
With the help of the PDL, we make detailed information on the usage of user

14

package de.rwth.aal;
import java.util.List;

classdiagram AmbientHealthSystem {

class Camera {
Room location;
List <Person > recognizedPersons;
VideoData stream;

}

class Monitoring {
<<use="Determine whether resident needs help.",

condition="Sensors detect that resident needs help.",
mandatory="Camera.recognizedPersons">>

boolean detectCriticalHealth ();

<<condition="Testified health professional detects that
resident needs help.">>

boolean healthProfessionalDetectCriticalHealth ();

<<use="Ad funded service", unused="If you do not want to get
advertisements , the service costs $1 per month",

optional="Camera.recognizedPersons">>
Ad getPersonalizedAd ();
List <MedicalCase > medicalHistory;

}

class NotificationManager {
<<use="Call an ambulance to my home.", optional="Camera.location">>
void placeEmergencyCall ();

<<use="Call family in case of medical incident.",
optional="Camera.stream">>

VideoData openVideoCall ();

<<use="Display all medical information to the emergency doctor.",
optional="Monitoring.medicalHistory">>

void provideMedicalHistory ();
}

}

Listing 1: Example PDL model from ambient assisted living

data available, which allows us to automatically derive the service-specific part
of the privacy policy. Commonly used privacy policies leave only one choice to
the user: Accept the policy and use the service as a whole or do not use it at
all. With UPECSI, we provide a more decent view on this decision as we enable
users to use only parts of a service, provide only the necessary subset of data,
and hence customize the privacy policy to their specific perception of privacy.
In addition we empower users to enforce their individual privacy policy on their
data by means of the PEP as discussed in Section 6.3.

We illustrate our PDL concept for achieving customizable privacy policies
using two examples from our application areas. Listing 1 illustrates an exam-
ple implementation of a cloud-based service in the area of assisted living, while
Listing 2 depicts a cloud-based service for public mobility assistance. These
PDL models are written by a service developer, who creates a health-care as-
sisted living, respectively, public mobility assistance service. For each attribute,
i.e., customer data originating from an IoT device, the service developer has to

15

package de.rwth.mobility;
import java.util.List;

classdiagram MobilityService {

class RoutingService {
<<use="Find people near me to help me on my trip.",

optional="User.location">>
void addPotentialHelpers ();

<<use="Respect the shopping list when calculating the route.",
optional="User.shoppingList">>

void addShoppingList ();

<<use="Plan your current route.", mandatory="User.location">>
void planRoute ();

<<use="Inform someone else about where I am and where I am heading to.",
optional="RoutingService.currentRoute">>

Route retrieveMe ();

<<condition="A family member is searching for me.">>
boolean familiyIsSearchingForMe ();

<<description="Next places to visit">>
Route currentRoute;

}

class User {
Location location;
List <String > inabilities;
List <String > shoppingList;

}
}

Listing 2: Example PDL model from mobility scenario

specify the usage of customer data within this service respective method with
the use stereotype (see, e.g., method placeEmergencyCall in Listing 1). This
information allows to express data usage in a detailed, human-readable way. To
describe users’ data in the privacy policy, the attribute names from PDL are
used. In case these attributes are of solely technical nature, e.g., a framework
requires to implement a data structure with specific attribute names and hence
users might have problems understanding these terms, the description stereo-
type may be used to describe the attribute from a non-technical perspective (see
variable currentRoute in Listing 2 for an example). We defer the discussion on
how this information can be perceived by inexperienced users to Section 6.2.

In order to allow the user to customize the functionality of a service to her
individual privacy requirements, the service developer can declare parameters
of the individual service methods, i.e., the user-data a method operates on, as
mandatory or optional using the respective stereotype. Hence, each optional

stereotype (see, e.g., method openVideoCall in Listing 1) indicates a user-choice
in the privacy policy. In case the service functionality changes if a method is
disabled by the user, the consequences have to be specified in human-readable
form using the unused stereotype. For example, in Listing 1 the user has two
options with respect to the method getPersonalizedAd(): i) allow the cloud
service to use the list of recognized persons to display advertisements and by

16

this fund the operation of the service, or ii) do not allow the cloud service to
use this data to display advertisements and instead pay a monthly fee of $1
for using this cloud service. Hence, for each optional method, the user has to
choose between the two mutually exclusive options use and unused.

As emergency services (see Section 2.2) are used in a strictly time-constrained
manner, it is infeasible to present a privacy policy to the user when the data is
actually needed (i.e., in case of an emergency). Instead, the user already decides
about her privacy choices for an (emergency) service during the upfront setup
of this service. An emergency event detected by a service or indicated by a
trusted third party results in a method call within the service implementation,
as the service needs to react upon this event. In order to enable the user to
specify which condition should be treated as an emergency, we provide the PDL
keyword condition. This keyword marks methods which detect such emergency
conditions (see method familiyIsSearchingForMe in Listing 2 for an example)
and give a description to the user. The generated flexible privacy policy then
allows the user to specify which data should be provided to the emergency service
if certain conditions indicate an emergency. In case a condition method does
not rely on data from the IoT network of the user, the emergency condition may
be determined externally, e.g., by a trusted third party. As such a method can
function properly even in cases the IoT network of the user is not functional,
e.g., in case of a car accident, the flexible privacy policy allows the user to
choose in which situations she rates availability of a service higher than privacy
enforcement.

6.1.2. Monitoring Data Usage and Auditing Data Processing

Using the interactive privacy policy, users define how their data should be
used by a service. In order to give them transparency over who actually did
access their data, we additionally introduce a database abstraction layer that
monitors access to data. This layer, which is provided and operated by the
provider of the cloud platform, logs every access of a cloud service to a user’s
data, i.e., each access to an attribute with a use stereotype. This allows the user
at any time to retrieve a detailed statement on which method of a specific cloud
service accessed which parts of her data, at which point in time, and for which
specific purpose. As the collected log on data usage itself reveals potentially
sensitive information, it has to be protected. For this purpose, we employ
object security mechanisms (similar to those employed by the PEP which we
describe in Section 6.3.1) to ensure that only the owner of the data that has
been accessed can view the corresponding log file. In order to guarantee that no
one can tamper with the log file, i.e., modify or delete lines, we can additionally
apply a secure logging scheme, e.g., the one proposed by Ma and Tsudik [70].

While being aware of the services which access her data, the user needs to
be guaranteed that the individual methods of a specific cloud service only use
her data as stated by the service developer in the use stereotype. However, a
typical user of our system (see Section 2) does not have the expertise to verify
this by herself even if the source code would be freely available, which often is
not the case because the service developer might want to protect his intellectual

17

Figure 4: Interplay of components while generating code from a PDL model. Boxes with
sharp edges are components which process artifacts that are depicted as boxes with round
edges.

property. In order to offer the audit of the processing of data, we introduce
a trusted auditor, e.g., the provider of the cloud platform or a certification
authority, that has to verify the data usage in the service implementation. We
designed the description of data usage such that it is directly connected to the
method implementing the corresponding functionality. This enables the auditor
to efficiently perform a detailed review, as he only has to review those parts of a
cloud service implementation that operate on privacy-relevant data and is aware
of their promised and thus expected behavior. By reviewing the application-
specific authorization implementation part of flexible access control, the auditor
checks that emergency conditions in deed rely on the trusted third party granting
access. The provider of the cloud platform will only allow to operate and thus
make available to users those cloud services, which have successfully passed a
data processing audit. This allows us to guarantee the user that cloud-based
services actually use her data only as specified in their corresponding privacy
policy.

6.1.3. Generating Executable Code from PDL Models

Following the model-driven development approach, a PDL model needs to
be executable [59] to be of value for developers. In order to realize this, we uti-
lized the UML/P implementation, which is part of the MontiCore Framework
(see Section 4.4), and implemented a generator which automatically derives the
implementation specific part of a service’s privacy policy and data usage mon-
itoring from a PDL model. Figure 4 depicts an overview of the implemented
generator within the MontiCore Framework. MontiCore provides the UML/P
(1) which we extended to realize the PDL. From the UML/P language defining
grammar, the MontiCore Framework derives the parser (2) as well as an Ab-
stract Syntax Tree (AST) data structure (3) which is used in the core generator
(4) to access the parsed information from the PDL model (5).

The process of transforming a PDL model to executable code (6, 7) by these
components works as follows: First the parser (2) parses the PDL model from
a file and creates an AST (3) which provides the essential information from a

18

PDL model, e.g., by leaving out syntactical sugar such as brackets, whitespaces,
and newlines. The generator (4) essentially consists of several Freemarker tem-
plates [71] which are called by MontiCore after parsing. A template, being a
prototype of an output file, contains variables that need to be assigned a value
during the generator run in order to produce a concrete output file. These vari-
ables are assigned based on data from the AST (3) which is provided to the
generator. The Freemarker template language provides control sequences which
allow to directly feed values from the AST into the generated file. However,
more complex computations on the AST are written in Java and called from
within the template when the calculated value is needed. Using this setup when
processing a PDL model, the generator produces a web application (6) which
presents the service’s interactive privacy policy to the user. To support Data
Usage Monitoring in services, the generator derives service-specific Data Access
Objects (DAOs) (7) which log every access to user data from the PDL model.
As discussed in Section 6.1.2, these DAOs are then used within the service as
interface to the database.

6.2. Interaction with the User

In order to realize notice and consent, user interaction with UPECSI requires
special consideration. When referring to the application areas of Section 2.1, we
must consider that UPECSI’s approach to privacy may be applicable to users of
different levels of privacy expertise, ranging from privacy experts able to make
informed decisions up to absolutely IoT-privacy novices – such as our 75-years-
old widowed female retiree. In this section, we first present configurable privacy
policies for privacy experts before we discuss an approach for default privacy
settings for privacy novices. Finally, we argue on the social context of user
interaction.

6.2.1. Configurable Privacy Policies for Privacy Experts

Technically speaking, a user considered an IoT-privacy expert may use her
interface to read on the most detailed scale through the generated privacy policy
of every service she uses. Figure 5 shows the generated privacy policy from the
ambient assisted living example depicted in Listing 1. As shown in Figure 5a, the
experienced user can choose which optional parts of the ambient assisted living
service she wants to use. If the user decides to enable the advertisement funded
service, the notification about the monthly fee disappears. Figure 5b shows the
data fields (class attributes) to which the service needs access in order to realize
the functionality selected by the user. Users are able to review the used data
for each combination of service functionality and choose the one that fits their
privacy needs. Similarly, Figure 6 shows the adaptable privacy policy that was
generated for the interactive mobility assistance service depicted in Listing 2.
In order to express flexible access control rules as discussed in Section 6.3.2,
the user utilizes the condition editor shown in Figure 5c and Figure 6c. In
this context, the decision which options to choose from the privacy policy or
which data to submit to the service, respectively, is sent as the user’s privacy
configuration to the PEP which will enforce this privacy decision.

19

(a) Interactive selection of functionality.

(b) Overview over resulting data usage.

(c) Condition editor for realizing flexible ac-
cess control.

Figure 5: Screenshots of the automatically
generated adaptable privacy policy for the
ambient health system.

(a) Interactive selection of functionality.

(b) Overview over resulting data usage.

(c) Condition editor for realizing flexible ac-
cess control.

Figure 6: Screenshots of the automatically
generated adaptable privacy policy for the
mobility service.

20

6.2.2. Default Privacy Settings for Privacy Novices

In contrast to this very detailed privacy policy, default privacy settings at
different layers of abstraction are provided by trusted third parties to support
IoT-privacy novices in their decision about privacy configurations. Figure 7
shows a possible abstraction layer for privacy novices provided by a third party
institution for the assisted living resp. mobility example. In Figure 7a, the
user can choose between three default privacy configurations for her ambient
health system. Here, the first option provides the most privacy protection, but
also limits functionality and requires a fee. The second option represents the
privacy configuration shown in Figure 5 and provides slightly less privacy in
trade for more functionality. Finally, the third – ad-funded – option provides
the least amount of privacy. Similarly, the default privacy policies in Figure 7b
offer the user a choice between two options. Here, the second option (which
resembles the privacy configuration from Figure 6) again offers a reduced level of
privacy in order to realize more functionality. To create such various abstraction
layers of privacy settings, third parties use their privacy expertise – e.g., such
as metrics like the “Privacy Risk Index” depicted in this example – and the
detailed descriptions from the adaptable privacy policy. Although using this
recommended policy, the user optionally may still change individual settings
in her privacy configuration referring to the detailed adaptable privacy policy
shown in Figures 5 and 6. By offering such interaction possibilities, the user
is continuously assured control and verifiability of her data regardless of her
factual privacy-related technical expertise, which leads us to finally focus on the
social aspects from this technical description of user interaction.

6.2.3. Social Context of User Interaction

UPECSI highlights not only a technical but also a social, i.e., situated and
collective, context [72] by constraining what information is collected, as well
as with whom and under which conditions information is shared [73]. Thus,
the system remains adaptable to context-specific norms of different real-life ap-
plication areas (ranging from our presented assisted living application area to
the mobility assistance outlined in Section 2). Furthermore, this is an useful
approach to maximize transparency [74] of the whole system which will foster
users’ trust in UPECSI. To illustrate this, reconsider the user interaction de-
picted in Figure 7 again: The introduced privacy-novice uses several services
with recommended policies from trusted third parties which may range, e.g.,
from family members’ recommendations to such of certified home care service
providers (HCPs). Such third parties may be institutions or crowd-based voting
systems analyzing the privacy policy of a service and judging about the privacy
trade-off in place of the user (or, on a less rigid level, giving at least recommen-
dations to those IoT-privacy novices). In any case, a user relies on the verdict
of an auditor, and an institution guarantees granting access under clearly spec-
ified conditions. For example, she may decide in advance which information
from which types of sensors should be revealed permanently or temporarily to
her HCP or to any medical personnel in case of an actual emergency. But all
recently discussed privacy concerns and accompanying efforts are worthless, if

21

(a) Ambient Health System (b) Mobility Service

Figure 7: Screenshots of default privacy settings for privacy novices provided by a trusted
third party.

UPECSI’s usability is flawed. Therefore, the condition editor shown in Figures
5c and 6c is used to present the privacy policy about which options to choose
in an understandable and specifiable way. For instance, while it may abso-
lutely not being necessary for the depicted non-experienced user to understand
the technical details of UPECSI (i.e., data protection, annotation enforcement,
flexible access control, dynamic privacy policies, data monitoring, and auditing
of data protection), those users familiar with such techniques may choose their
own configurations and type of personal information involved, i.e., characteris-
tics of the data-gathering technique, the form of the data, spatial, and locational
aspects. To sum up, as [30] puts it, trust in the information society is based not
only on calculus and knowledge, but on social reasons as well. Here, the notion
of trust is being defined as the user’s certainty that the system is capable of
providing the required services accurately and infallibly, i.e., sound operations,
effective security mechanisms, abidance of regulations and laws, while at the
same time, besides all, the notion of trust always contains the acknowledgement
of a minimum risk factor. We will deepen the discussion on the user acceptance

22

of UPECSI in Section 7.6.

6.3. Privacy Enforcement Points

After a user has decided on her specific privacy configuration, this privacy
configuration has to be enforced whenever IoT data leaves the control sphere
of this user. In our application areas and network scenario, the connection
of an IoT network to the cloud is realized using a gateway (see Section 2).
Notably, a single user can operate an arbitrary amount of IoT networks and
hence arbitrarily many gateways. We identify these gateways as the distinct
boundaries at which potentially sensitive data leaves the control sphere of the
user. Hence, the enforcement of a user’s security and privacy requirements has
to be realized here. For this, we introduce the Privacy Enforcement Point (PEP)
as a new logical entity on each of these gateways. There, the PEP acts as the
representative of the user and allows her to remain in control over her data,
even if it leaves her secured IoT network and is outsourced to the potentially
untrusted cloud. To achieve this goal, the PEP has to fulfill three tasks: i) data
protection and access control, ii) flexible access control, and iii) enforcement of
data handling requirements. In the following, we discuss these tasks of the PEP
in more detail.

6.3.1. Data Protection and Access Control

In order to protect access to potentially sensitive data when it leaves the
secured network of the user, we provide cryptographic access control which
makes use of encryption. For this, we base the data protection and access control
mechanisms of UPECSI on the SensorCloud security architecture [3, 5, 7, 39].
The underlying idea here is to encrypt all data using a symmetric data protection
key before it is upload to the cloud. In order to allow a cloud service access
to specific data, the PEP then releases the corresponding data protection keys
for this cloud service. This way, we protect the confidentiality of potentially
sensitive data and prevent unauthorized access to it. In order to allow more
fine-grained access control, we periodically exchange the data protection keys,
which allows to restrict access to certain periods of time.

More precisely, the PEP encrypts each piece of data only once, irrespec-
tive of the number of authorized cloud services, using a data protection key
and leveraging a symmetric cipher (e.g., AES in CBC mode). When the user
instructs the PEP to authorize a cloud service to access (specific parts of) her
potentially sensitive information, the PEP has to release the corresponding data
protection key for each authorized service. For this, the PEP encrypts the data
protection key with the public key of each authorized cloud service (e.g., using
the asymmetric cryptosystem RSA) and uploads it to the cloud. Only an autho-
rized cloud service may then decrypt the encrypted data protection key using
its private key and, subsequently, decrypt only those data it is authorized to
access. Notably, nobody else, not even the operator of the cloud, can gain access
to the protected data. Hence, using the PEP, we provide an effective measure to
securely restrict access to potentially sensitive data and allow only authorized

23

(a) Flexible access control enforced by Pri-
vacy Enforcement Point.

(b) Flexible access control enforced by exter-
nal trusted third party.

Figure 8: The user can leverage her Privacy Enforcement Point (a) or an external trusted
third party (b) to realize flexible access control based on internal and external events.

entities to access this data. Furthermore, this access can be restricted to specific
parts of a piece of data and limited to a specific time range.

6.3.2. Flexible Access Control

Using our basic data protection and access control as described above, only
authorized cloud services can access a user’s data. However, in certain situations
we have to account for a trade-off between privacy and safety, e.g., health (see
Section 3). In case of a medical emergency, the user would most likely be willing
to completely give up her privacy if this could help to save her life. When
using fixed and predefined cryptographically secured access control mechanisms
(as presented in Section 6.3.1), this is per se not possible. Hence, UPECSI
additionally supports Flexible Access Control. The underlying idea here is to
automatically authorize a cloud service based on observed internal and external
events. Here, internal events originate from one of the user’s IoT networks and
can, e.g., be triggered based on the measurements of an IoT device that indicates
a critical health condition. Contrary, external events originate from outside the
user’s IoT networks and are typically triggered by a trusted third party, e.g.,
a health professional or emergency center observing a critical health condition.
Notably, also the combination of internal and external events is possible. For
example, an emergency doctor could only be allowed to access a user’s data, if
his statement that this user is unconscious is consistent with readings from the
user’s vital signs monitoring device. As these examples show, the choice between
respectively combination of internal and external events directly influences the
privacy of the individual user. We will deepen the impact of this choice on the
user’s privacy in our discussion in Section 7.

In order to realize flexible access control, the user has to define upfront who
should get access to her data whenever a specific internal or external event is
triggered. For example, she could choose that any emergency doctor gets access
to her data in case of a medical emergency as testified by her personal vital signs
monitoring device. This way the user can ensure that medical personal is always
granted access to her medical data when needed to save her life. From a technical
perspective, flexible access control requires to dynamically release the necessary
data protection keys (see Section 6.3.1) to a previously not authorized cloud
service based on observed events. For this, the user can decide to either leverage
the PEP or an external trusted third party. We depict this two alternatives in

24

Figure 8. Using the PEP prevents potential misuse while an external trusted
third party mitigates the negative effects of a single-point-of-failure. Again,
we will deepen the impact of this trade-off between privacy and safety in our
discussion in Section 7 and in the following focus on the technical realization of
the two alternatives.

If the user decides to rely on the PEP for performing flexible access control
(depicted in Figure 8a), the PEP generates a new public/private key pair up-
front for each flexible access control policy and uses the corresponding public
key to continuously release the necessary data protection keys encrypted to the
cloud (see Section 6.3.1). Using a new public/private key pair here is necessary
to prevent that an emergency service can access the data before the potential
emergency took place. Based on the measurements from the IoT network and
notifications over external events, the PEP constantly evaluates whether a flexi-
ble access control policy should be executed. In this case, the PEP encrypts the
private key it created for this policy with the public key of the corresponding
emergency service and releases it to this service. The emergency service can
then decrypt the private key and thus also decrypt the data protection keys
needed for accessing the actual data.

Should the user decide to rather use a trusted third party for managing
flexible access control (shown in Figure 8b), the PEP again creates a priori a
new public/private key pair for each flexible access control policy. Again, the
required data protection keys are continuously released encrypted to the cloud
using this public/private key pair. The PEP then, already when setting up a new
flexible access control policy, encrypts the private key for this policy with the
public key of the to-be-authorized emergency service and hands this encrypted
key over to the external trusted third party. The trusted third party securely
stores the encrypted key (which the trusted third party itself cannot access
as the key is encrypted) and constantly checks for the (internal and external)
events listed in the flexible access control policy. As soon as it observes the listed
events, it releases the encrypted private key to the emergency service. Again,
the emergency service can then decrypt this private key, subsequently decrypt
the data protection keys, and finally access the data. We will further focus on
the benefits of this approach and its implications on privacy and security in our
discussion in Section 7.

6.3.3. Enforcement of Data Handling Requirements

As discussed in Section 3, privacy requirements do not only consist of access
to data but also impose restrictions on how data is handled, e.g., where data is
transferred to, stored, and processed. In order to allow the user to require the
enforcement of these so-called data handling requirements [75], the PEP allows
the user to add data handling annotations [12] to her data. For each IoT device,
i.e., data source, the user can provide data handling annotations that should
be attached to data that originates from this device. Using data handling an-
notations, a user can, e.g., specify that certain data is not allowed to leave her
network at all, other data can leave the network but must only be forwarded to
cloud offers in a certain jurisdiction, while a third group of data can be trans-

25

ferred to any cloud provider. First, the PEP decides, based on the annotation,
whether data is allowed to leave the controlled network and if so, only forwards
the data to eligible cloud offers. Before any data leaves the IoT network, the
PEP attaches a digital data handling annotation to each piece of data [12].
These annotations contain obligations on how a users’ data has to be handled
in the cloud. Such annotations, e.g., can impose restrictions on where and how
long data is allowed to be stored. In the cloud, these data handling annotations
can be interpreted and enforced by a data handling requirements-aware cloud
stack [12, 75]. We will discuss in the next section how this contributes to our
goal of empowering users to keep control over their privacy when outsourcing
data collected by IoT devices to the cloud.

7. Discussion

After having presented the cornerstones and individual components of UPECSI
in detail, let us examine how our approach addresses and overcomes the devel-
opment and privacy challenges and considerations presented in Section 3. We
show for each of the challenges (data security, transparency by design, effi-
cient privacy-aware development, user-controlled data usage and handling, and
adaptable user-control) we derived in our problem statement (Section 5), how
we approached and solved it. Whilst doing so, we particularly focus our dis-
cussion on the individual user, as achieving user acceptance is the most crucial
driving force of our work. We close this section with a discussion on how the
user acceptance of UPECSI can be evaluated and present preliminary results of
this evaluation.

7.1. Data Security

As a core challenge of realizing UPECSI, we identified the securing of access
to data such that only the owner of this data can grant data access, while at the
same time allowing access to preselected emergency services in case of need. In
order to tackle this challenge, we introduced Privacy Enforcement Points (PEP),
which secure data before it is uploaded to the cloud (see Section 6.3). As all data
objects are encrypted before they leave the secured network of the user, per se no
one except the user can access it. Thus, without further action, all data remains
private. Only if the user decides to grant a cloud service access to specific data,
this selected cloud service gains insight to the data. Notably, UPECSI allows
the user to restrict data access to only those parts of the data that are absolutely
needed and at the same time provides an audit-based guarantee that this data
is only used for the intended purpose. We will further focus on the benefits of
this with respect to transparency and user-controlled data usage in the following
sections and for now continue focusing on data security.

Notably, as both data and data protection keys are stored in the cloud,
data can be accessed even if PEP is currently not reachable. More specifically,
even if an attacker performs a denial-of-service (DoS) attack [76] against the
IoT network of a user in order to block access to this network, both data and

26

services operating on this data will not be impaired. However, an attacker
can still block, e.g., using a DoS attack, the upload of new IoT data to the
cloud. Still, as all cryptographic operations of UPECSI happen either based on
a timely schedule or upon request of the user owning the device, the attacker
cannot trigger (costly) cryptographic operations to significantly increase the
impact of his DoS attack [77]. Hence, UPECSI improves the protection against
DoS attacks on a user’s infrastructure when compared to solutions that realize
storage and processing of IoT data within the IoT network itself as the system’s
pre-attack state remains fully available with services still operational on this
state. A full protection of the user’s infrastructure against DoS attacks and the
even more powerful distributed DoS attacks is orthogonal to our work and has
already been widely studied in the literature [78].

Remarkably, data security gets significantly more challenging when consid-
ering emergency access to data. We address this challenge using our flexible
access control policies (see Section 6.3.2). These allow a user to define upfront,
who should get access to her data in case of an emergency, which is trigged by
internal or external events. The actual access granting in case of a triggered
event is then realized either internally by the user’s PEP or externally by a
trusted third party. As shown in Section 6.3.2, a user’s decision between relying
on internal or external events as well as internal or external access granting con-
stitutes a trade-off between privacy and safety. In the following, we will detail
our discussion on this trade-off.

The first trade-off the user has to make is the decision between internal
(i.e., events originating from her own IoT devices) and external (i.e., events
originating from outside the control of the user) events. The advantage of relying
on internal events is that the user can be sure that the event is genuine and
nobody tries to forge an event in order to get access to her data. This, however,
comes at the cost of a single-point-of-failure, as the IoT network which triggers
the internal event might temporarily be unreachable. Here, external events,
which can be triggered by a multitude of entities, provide more reliability and
thus safety. Notably, UPECSI also supports the combination of internal and
external events. This allows the user to configure that normally internal and
external events have to be consistent, but still allows to use only external events
in case of network disruptions as a fail-over.

For the second trade-off the user has to decide whether her PEP or an
external trusted third party should release the necessary data protection keys
in case of an emergency. Both solutions cryptographically guarantee that the
data protection keys are only released to an entity that the user authorized
upfront. However, if realized using an external trusted third party, the user has
to trust that events are monitored and evaluated properly and data protection
keys are indeed only released in case of an emergency. Again, utilizing the PEP
for this task provides stronger privacy but bears the risks of a single-point-of-
failure.

These trade-offs between privacy and safety have to be decided by each user
on her own. Hence, in UPECSI we empower the user to take this decision
separately for each individual piece of data and application area. However, as

27

we will discuss in Section 7.5, we additionally account for privacy inexperienced
users by providing policy recommendations from trusted third parties. This
allows us to establish data security as the core foundation to ground user trust
in the privacy of UPECSI.

7.2. Transparency by Design

Beside data security concepts and reusable components, service developers
need to consider privacy when designing and implementing the system’s func-
tionality and data structures. To support them in this activity, we developed
the PDL as presented in Section 6.1. Using the PDL, developers can express
the data structures and service functionalities during system development using
UML class diagrams in a textual Java-like language, being familiar with from
their daily development tasks. Using the PDL keywords as discussed in Sec-
tion 6.1 they describe the usage of data within their service on a per-attribute
and per-method level. This allows for a much higher level of detail than other
approaches might offer, as presented in related work. Notably, the privacy de-
scription is integrated already into the design process at a point where system
designers of conventional systems make the actual decision about users’ privacy.
Hence, our approach results in a much more straightforward way to create a
privacy description as compared to the reverse engineering of this description
after the implementation has already been finished.

The details provided by the service developer using our PDL are crucial for
providing transparency to end-users, for informing them about privacy impli-
cations when using the service, and allowing them to make a profound decision
about there privacy. As the service developer is forced to entrench a detailed
description of the usage of data for each utilized attribute already at the time
of development, the users gain full and fine-grained transparency by design over
the potential usage of their data before they decide to entrust a specific service
with their potentially sensitive data.

Furthermore, our approach for monitoring and auditing the usage of data as
presented in Section 6.1.2, allows the user and trusted auditors to check at any
point in time whether the stated data usage descriptions are indeed adhered to
by the actual implementation of a cloud service’s functionality. With UPECSI
we enable the individual user to, e.g., verify which specific method of a cloud
service has accessed which parts of her data at which point of time. Especially
for privacy experts, this for the first time enables full transparency over the
usage of data in the cloud.

7.3. Efficient Privacy-aware Development

Privacy – like any other quality attribute – does not arise spontaneously
without any extra effort during development. Thus, one goal of UPECSI is to
minimize the additional effort of the developer while maximizing the amount
of privacy features of the resulting cloud service. As our PDL captures privacy
information along with the data structures and functionality design, developers
can describe privacy information during the process of designing and implement-
ing the cloud service. This way developers do not have to describe the privacy

28

information in a separate, later step, e.g., when preparing the cloud service for
release, but privacy is built in during development.

To maximize the effect and utilize the strength of the model-driven ap-
proach when developing structurally identical systems, which differ only in the
data model, we provide with UPECSI a generator which allows to derive a pri-
vacy policy and a database abstraction layer for data monitoring from a PDL
model. When functional requirements for the service change, the data structure
and functionality need to be changed and so do the data use descriptions. As
UPECSI supports a model-driven development process, where the PDL model
is a primary development artifact, all these changes are performed within the
PDL and the privacy policy and data monitoring get automatically re-generated.
Hence, during service evolution, the privacy information is kept up-to-date and
consistent within the service and it’s representation for the user.

As cloud services in UPECSI operate on unencrypted data, the user must
trust the cloud service implementation. To establish this trust, we employ two
mechanisms: i) We connect the privacy policy with the services’ source code
which allows us to make the data processing within the service transparent to the
user. This is achieved by adding use statements to methods in the PDL. ii) We
introduce an auditor who reviews the service’s implementation and ensures, that
the service handles the data exactly as described in the use statement. As the
use corresponds to a statement within the actual source code, the audit is much
simpler and provides more details compared with a state-of-the-art black box
data privacy audit of a whole application.

With these measures, we significantly reduce the extra effort needed for
engineering privacy functionality into the service and, at the same time, ease
the review and audit of the service’s usage of data.

7.4. User-controlled Data Usage and Handling

In order for users to accept and trust UPECSI, we shifted the choice and
control over the usage and handling of data from the service providers and
developers to the individual end-user. For this, UPECSI realizes notice, consent,
and self-determination via the generated privacy policy as follows. As described
in Section 6.2, notice is realized by providing the user with a detailed privacy
policy which we generate using the information provided by the developer via
the PDL. This way, we inform the user about the data a service uses and how it
is used within the individual parts of the service. By this, we especially empower
experienced users to get a detailed insight into the way the service processes their
data. To provide choice and self-determination to the user, the privacy policy
is customizable. This allows the user to choose which optional functionalities
of a service, which require access to additional data, she wants to use. In case
the user is willing to provide this data only in case of certain events, she can
use the condition editor to specify flexible access control policies. The resulting
data usage is then displayed in the privacy policy data usage listing. If the
user finally agrees with the customized privacy settings, she accepts the policy.
Thus, the PEP will grant this specific service access to the data specified by the

29

user. This way, cloud services in UPECSI can only access the data explicitly
specified by the user. Hence, we successfully realized user consent.

In order to meet a user’s privacy requirements, it is not enough to only fo-
cus on access to and usage of data. Additionally, users may wish to impose
restrictions on the handling of data, e.g., regarding the storage location of data
(see Section 3). For this, in addition to the use statements provided by the
service developer, we allow the user to add data handling annotations to poten-
tially sensitive data when it is processed by the PEP. It is then the task of the
cloud provider and PEP to interpret and adhere to these data handling anno-
tations [12, 75]. This helps to increase a user’s privacy in two ways. First, the
user can configure that certain, extremely sensitive data should not leave her
secured network at all. Using data handling annotations, she can instruct the
PEP to never forward this data to the cloud. Thus, she has a strong guarantee
that this data will stay in her network, even if she might accidentally grant a
service access to this highly private information. Second, the user can precisely
specify where and for how long her data is allowed to be stored. The cloud
provider’s adherence to the annotated data handling requirements can then be
verified using UPECSI’s monitoring of data usage (see Section 6.1.2). This gives
the user a certain guarantee that data handling requirements are indeed being
followed.

7.5. Adaptable User-control

As previously described, one important feature of UPECSI is to shift the
choice of data usage and handling from service providers and developers to end-
users. Although this puts the user back in control over her privacy, this also
implies that she has to take a lot more responsibility for her privacy. However,
due to the focus of our application areas, we have to consider dealing with
privacy and technical inexperienced users. Therefore, we have to avoid that
privacy novices like the 75-years retiree get overwhelmed by the various options
provided by UPECSI. Due to the simple fact that all privacy functionality is
worthless if the user cannot handle it, privacy novices need a simplification for
complex privacy considerations, while at the same time privacy experts should
be attracted by UPECSI offering full control to all privacy functionality.

Hence, it is one crucial point to offer accessibility by providing different levels
of functionality for different user groups. However, offering more functionality
in terms of adaptable and transparent configurations must additionally relate
to different norms of usage. As shown in Section 3, privacy is not a fixed norm:
in different contexts, users might trade-in privacy for, in their regard, more
or less beneficial goods or services, e.g., unveiling personal health information
in case of medical emergencies or quality of life in a nursing home. Finally,
adaptability of user-control requires the inclusion of third party assistance, i.e.,
in our case having the option of being provided with policy recommendations
from trusted third parties. These trusted third parties provide for a specific
use case and privacy norm (e.g., nursing homes in a specific country) default
privacy configurations for specific cloud services. Still, the user can review these
default settings and overwrite (parts of) them should she want to do so. By

30

this, we realize an adaptable control for the user over the usage and handling
of her data while at the same time still allow for parameterizing a cloud service
individually for each user.

7.6. Evaluating User Acceptance

So far, we have only outlined the social context of UPECSI, which now
leads us to a tentative evaluation on user acceptance or user experience, re-
spectively. As shown in previous work [23], not until recently have cloud-based
services proliferating ambient assisted living solutions (or mobility services, re-
spectively) been subject to explicit sociological analyses. Thus, studies aiming
at encompassing insights into how private end-users adhere to such cloud-based
services – their areas of application and what users consider as being problem-
atic – often rely on open, exploratory methodological designs; e.g., qualitative,
semi-structured interviews (as opposed to the rigorously quantitative survey
methodology) which facilitate the creation of a comfortable conversational cli-
mate empowering the interviewees to weight different aspects of the respective
topic according to their own views. Such a way of interviewing helps to identify
central ideas without risking to ignore aspects due to too strongly pre-formed
perceptions of the relevant matters.

In [23] we present the conception, realization, and results of such a cloud-
related, qualitative methodological approach in detail. Here, we summarize
these results as follows: In general, technological approaches such as Cloud
Computing and Smart Home (e.g., as eminent building blocks of our ambient
assisted living scenario) are appreciated by the interviewees and considered use-
ful when regarding benefits like the supervision and control of health-related
vital data or different functions and appliances in the house. As well, this
holds true for the less technophiles among our interviewees (e.g., older ones).
Addressing potential negative aspects, interviewees’ concerns regard primarily
the handling and functioning of the technology and its consequences, and thus
tackle the question how a respective application might influence everyday life.
It is likewise important to transparently communicate a system’s features and
procedures to potential users in order to support their decision-making and
risk-assessment – e.g., prevention of loss of control on the user side by includ-
ing mechanisms enabling the user to regulate a system’s level of autonomous
actions – as shown beforehand by discussing the introduction of the PDL and
its consequences, as well as by illustrating how the user is represented at the
interconnection of IoT and the cloud. To sum up, such a way of assessing user
acceptance as presented for the time being here helps to stimulate the technical
buildup of UPECSI with insights from its social context.

8. Conclusion

The federation of the Internet of Things and cloud computing with all its
benefits is hindered by severe privacy concerns of end-users and privacy con-
siderations of service providers. In order to overcome these severe concerns,

31

especially for privacy-critical application areas such as assisted living and pub-
lic mobility assistance, we presented our comprehensive approach to privacy in
the cloud-based IoT that addresses end-users and service developers at the same
time. As result of our work, we presented the UPECSI approach containing of
a comprehensive set of technologies together with organizational measures to
realize user-driven privacy enforcement for cloud-based services in the IoT.

With our contributions in UPECSI we i) allow individual end-users to pro-
tect their potentially sensitive data before it is transferred to the cloud, ii) em-
power cloud service developers to efficiently integrate privacy functionality into
the development process of a cloud service, and iii) provide users an intuitive,
adaptable, and transparent user interface which allows them to configure their
privacy settings based on their individual privacy experience.

As our discussion shows, UPECSI effectively contributes to a significantly
increased level of privacy when integrating the IoT and cloud computing and
thus allows to profit from the benefits of cloud computing even in privacy-critical
application areas such as assisted living and public mobility assistance.

In the future, we will further validate the user acceptance of our compre-
hensive approach. For this, UPECSI’s further technical build-up will strongly
be tied to feedback loops of a participatory design approach [6]. By doing
so, we effectively incorporate different interest groups (e.g., end-users, service
developers, and experts) into the further development process. This empowers
stakeholders as active members of the future development of UPECSI and hence
helps us to increase user acceptance.

Acknowledgments

We thank Michael Eggert, René Hummen, Alexander Roth, Kirsten Rüss-
mann, and Henrik Ziegeldorf for many fruitful discussions and valuable feedback.
Additionally, we would like to thank Anna Feininger and Marie Ludwig for
their research assistance and especially Lukas Koschmieder for the prototypical
implementation of our approach. We also thank the anonymous reviewers and
conference attendees of the 2014 International Conference on Future Internet
of Things and Cloud for their constructive comments which encouraged us to
improve our work. Finally, we would like to thank the anonymous reviewers
of Future Generation Computer Systems for their suggestions and comments
which helped to significantly improve this paper. This work has been funded by
the Excellence Initiative of the German federal and state governments within
the HumTec Project House at RWTH Aachen University.

References

[1] L. Atzori, A. Iera, G. Morabit, The Internet of Things: A survey, Computer
Networks 54 (15) (2010) 2787–2805. doi:10.1016/j.comnet.2010.05.

010.

32

http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010

[2] J. H. Ziegeldorf, O. Garcia Morchon, K. Wehrle, Privacy in the Internet of
Things: Threats and Challenges, Security and Communication Networks
7 (12) (2014) 2728–2742. doi:10.1002/sec.795.

[3] R. Hummen, M. Henze, D. Catrein, K. Wehrle, A Cloud Design for User-
controlled Storage and Processing of Sensor Data, in: 2012 IEEE 4th Inter-
national Conference on Cloud Computing Technology and Science (Cloud-
Com), IEEE, 2012, pp. 232–240. doi:10.1109/CloudCom.2012.6427523.

[4] F. Li, M. Voegler, M. Claessens, S. Dustdar, Efficient and Scalable IoT
Service Delivery on Cloud, in: 2013 IEEE Sixth International Conference
on Cloud Computing (CLOUD), IEEE, 2013, pp. 740–747. doi:10.1109/
CLOUD.2013.64.

[5] M. Henze, R. Hummen, R. Matzutt, D. Catrein, K. Wehrle, Maintaining
User Control While Storing and Processing Sensor Data in the Cloud, In-
ternational Journal of Grid and High Performance Computing (IJGHPC)
5 (4) (2013) 97–112. doi:10.4018/ijghpc.2013100107.

[6] M. Eggert, R. Häußling, M. Henze, L. Hermerschmidt, R. Hummen, D. Ker-
pen, A. Navarro Pérez, B. Rumpe, D. Thißen, K. Wehrle, SensorCloud:
Towards the Interdisciplinary Development of a Trustworthy Platform for
Globally Interconnected Sensors and Actuators, in: H. Krcmar, R. Reuss-
ner, B. Rumpe (Eds.), Trusted Cloud Computing, Springer, 2014, pp. 203–
218. doi:10.1007/978-3-319-12718-7_13.

[7] M. Henze, R. Hummen, R. Matzutt, K. Wehrle, A Trust Point-based Secu-
rity Architecture for Sensor Data in the Cloud, in: H. Krcmar, R. Reussner,
B. Rumpe (Eds.), Trusted Cloud Computing, Springer, 2014, pp. 77–106.
doi:10.1007/978-3-319-12718-7_6.

[8] L. Hermerschmidt, A. Navarro Pérez, B. Rumpe, A Model-based Software
Development Kit for the SensorCloud Platform, in: H. Krcmar, R. Reuss-
ner, B. Rumpe (Eds.), Trusted Cloud Computing, Springer, 2014, pp. 125–
140. doi:10.1007/978-3-319-12718-7_8.

[9] A. Botta, W. de Donato, V. Persico, A. Pescapé, On the Integration of
Cloud Computing and Internet of Things, in: 2014 International Con-
ference on Future Internet of Things and Cloud, IEEE, 2014, pp. 23–28.
doi:10.1109/FiCloud.2014.14.

[10] I. Ion, N. Sachdeva, P. Kumaraguru, S. Capkun, Home is Safer than the
Cloud! Privacy Concerns for Consumer Cloud Storage, in: Proceedings of
the Seventh Symposium on Usable Privacy and Security, ACM, 2011, pp.
13:1–13:20. doi:10.1145/2078827.2078845.

[11] H. Takabi, J. Joshi, G. Ahn, Security and Privacy Challenges in Cloud
Computing Environments, IEEE Security Privacy 8 (6) (2010) 24–31. doi:
10.1109/MSP.2010.186.

33

http://dx.doi.org/10.1002/sec.795
http://dx.doi.org/10.1109/CloudCom.2012.6427523
http://dx.doi.org/10.1109/CLOUD.2013.64
http://dx.doi.org/10.1109/CLOUD.2013.64
http://dx.doi.org/10.4018/ijghpc.2013100107
http://dx.doi.org/10.1007/978-3-319-12718-7_13
http://dx.doi.org/10.1007/978-3-319-12718-7_6
http://dx.doi.org/10.1007/978-3-319-12718-7_8
http://dx.doi.org/10.1109/FiCloud.2014.14
http://dx.doi.org/10.1145/2078827.2078845
http://dx.doi.org/10.1109/MSP.2010.186
http://dx.doi.org/10.1109/MSP.2010.186

[12] M. Henze, R. Hummen, K. Wehrle, The Cloud Needs Cross-Layer Data
Handling Annotations, in: 2013 IEEE Security and Privacy Workshops
(SPW), IEEE, 2013, pp. 18–22. doi:10.1109/SPW.2013.31.

[13] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, A View of Cloud
Computing, Commun. ACM 53 (4) (2010) 50–58. doi:10.1145/1721654.
1721672.

[14] M. Memon, S. Rahr Wagner, C. Pedersen Fischer, F. H. Aysha Beevi,
F. Overgaard Hansen, Ambient Assisted Living Healthcare Frameworks,
Platforms, Standards, and Quality Attributes, Sensors 14 (2014) 4312–
4341. doi:10.3390/s140304312.

[15] A. Queirós, A. Silva, J. Alvarelhao, N. P. Rocha, A. Teixeira, Usability,
accessibility and ambient-assisted living: a systematic literature review,
Universal Access in the Information Society 14 (1) (2015) 57–66. doi:

10.1007/s10209-013-0328-x.

[16] S. Koch, Healthy Ageing Supported by Technology: A Cross-Disciplinary
Research Challenge, Informatics for Health and Social Care 35 (3-4) (2010)
81–91. doi:10.3109/17538157.2010.528646.

[17] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT):
A vision, architectural elements, and future directions, Future Genera-
tion Computer Systems 29 (7) (2013) 1645–1660. doi:10.1016/j.future.
2013.01.010.

[18] M. Courtney, Premium binds, Engineering & Technology 8 (6) (2013) .
doi:10.1049/et.2013.0611.

[19] D. Christin, A. Reinhardt, S. S. Kanhere, M. Hollick, A survey on privacy in
mobile participatory sensing applications, Journal of Systems and Software
84 (11) (2011) 1928–1946. doi:10.1016/j.jss.2011.06.073.

[20] J. H. Ziegeldorf, N. Viol, M. Henze, K. Wehrle, POSTER: Privacy-
preserving Indoor Localization, in: 7th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, 2014, pp. 1–2. doi:10.13140/

2.1.2847.4886.

[21] J. Liu, X. Huang, J. K. Liu, Secure sharing of Personal Health Records in
cloud computing: Ciphertext-Policy Attribute-Based Signcryption, Future
Generation Computer Systems (2014) . doi:10.1016/j.future.2014.

10.014.

[22] I. G. Smith (Ed.), The Internet of Things 2012 – New Horizons, IERC,
2012.

34

http://dx.doi.org/10.1109/SPW.2013.31
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.3390/s140304312
http://dx.doi.org/10.1007/s10209-013-0328-x
http://dx.doi.org/10.1007/s10209-013-0328-x
http://dx.doi.org/10.3109/17538157.2010.528646
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1049/et.2013.0611
http://dx.doi.org/10.1016/j.jss.2011.06.073
http://dx.doi.org/10.13140/2.1.2847.4886
http://dx.doi.org/10.13140/2.1.2847.4886
http://dx.doi.org/10.1016/j.future.2014.10.014
http://dx.doi.org/10.1016/j.future.2014.10.014

[23] M. Eggert, R. Häußling, D. Kerpen, K. Rüssmann, SensorCloud: Socio-
logical Contextualization of an Innovative Cloud Platform, in: H. Krcmar,
R. Reussner, B. Rumpe (Eds.), Trusted Cloud Computing, Springer, 2014,
pp. 295–313. doi:10.1007/978-3-319-12718-7_18.

[24] M. Lesk, The Price of Privacy, IEEE Security Privacy 10 (5) (2012) 79–81.
doi:10.1109/MSP.2012.133.

[25] R. Beckwith, Designing for Ubiquity: The Perception of Privacy, IEEE Per-
vasive Computing 2 (2) (2003) 40–46. doi:10.1109/MPRV.2003.1203752.

[26] S. Pearson, Taking Account of Privacy when Designing Cloud Computing
Services, in: 2009 ICSE Workshop on Software Engineering Challenges
of Cloud Computing, IEEE, 2009, pp. 44–52. doi:10.1109/CLOUD.2009.

5071532.

[27] S. Pearson, A. Benameur, Privacy, Security and Trust Issues Arising from
Cloud Computing, in: 2010 IEEE Second International Conference on
Cloud Computing Technology and Science (CloudCom), IEEE, 2010, pp.
693–702. doi:10.1109/CloudCom.2010.66.

[28] M. Zhou, R. Zhang, W. Xie, W. Qian, A. Zhou, Security and Privacy in
Cloud Computing: A Survey, in: 2010 Sixth International Conference on
Semantics Knowledge and Grid (SKG), IEEE, 2010, pp. 105–112. doi:

10.1109/SKG.2010.19.

[29] J. Heiser, M. Nicolett, Assessing the Security Risks of Cloud Computing,
Tech. Rep. G00157782, Gartner (2008).

[30] D. Zissis, D. Lekkas, Addressing cloud computing security issues, Future
Generation Computer Systems 28 (3) (2012) 583–592. doi:10.1016/j.

future.2010.12.006.

[31] De Brauw Blackstone Westbroek N.V., EU Country Guide Data Location
& Access Restriction (2013).

[32] J. Rosen, The Right to Be Forgotten, Stanford Law Review Online 64
(2012) 88–92.

[33] M. Henze, L. Hermerschmidt, D. Kerpen, R. Häußling, B. Rumpe,
K. Wehrle, User-driven Privacy Enforcement for Cloud-based Services in
the Internet of Things, in: 2014 International Conference on Future Inter-
net of Things and Cloud, IEEE, 2014, pp. 191–196. doi:10.1109/FiCloud.
2014.38.

[34] M. Glinz, S. Fricker, On shared understanding in software engineering:
an essay, Computer Science - Research and Development (2014) . doi:

10.1007/s00450-014-0256-x.

35

http://dx.doi.org/10.1007/978-3-319-12718-7_18
http://dx.doi.org/10.1109/MSP.2012.133
http://dx.doi.org/10.1109/MPRV.2003.1203752
http://dx.doi.org/10.1109/CLOUD.2009.5071532
http://dx.doi.org/10.1109/CLOUD.2009.5071532
http://dx.doi.org/10.1109/CloudCom.2010.66
http://dx.doi.org/10.1109/SKG.2010.19
http://dx.doi.org/10.1109/SKG.2010.19
http://dx.doi.org/10.1016/j.future.2010.12.006
http://dx.doi.org/10.1016/j.future.2010.12.006
http://dx.doi.org/10.1109/FiCloud.2014.38
http://dx.doi.org/10.1109/FiCloud.2014.38
http://dx.doi.org/10.1007/s00450-014-0256-x
http://dx.doi.org/10.1007/s00450-014-0256-x

[35] C. Powers, P. Ashley, M. Schunter, Privacy Promises, Access Control,
and Privacy Management – Enforcing Privacy Throughout an Enterprise
By Extending Access Control, in: Third International Symposium on
Electronic Commerce, IEEE, 2002, pp. 13–21. doi:10.1109/ISEC.2002.

1166906.

[36] A. Lounis, A. Hadjidj, A. Bouabdallah, Y. Challal, Secure and Scalable
Cloud-Based Architecture for e-Health Wireless Sensor Networks, in: 2012
21st International Conference on Computer Communications and Networks
(ICCCN), IEEE, 2012, pp. 1–7. doi:10.1109/ICCCN.2012.6289252.

[37] D. Thilakanathan, S. Chen, S. Nepal, R. Calvo, L. Alem, A platform for
secure monitoring and sharing of generic health data in the Cloud, Fu-
ture Generation Computer Systems 35 (2014) 102–113. doi:10.1016/j.

future.2013.09.011.

[38] M. Li, S. Yu, Y. Zheng, K. Ren, W. Lou, Scalable and Secure Sharing
of Personal Health Records in Cloud Computing Using Attribute-Based
Encryption, IEEE Transactions on Parallel and Distributed Systems 24 (1)
(2013) 131–143. doi:10.1109/TPDS.2012.97.

[39] M. Henze, S. Bereda, R. Hummen, K. Wehrle, SCSlib: Transparently
Accessing Protected Sensor Data in the Cloud, in: The 6th Interna-
tional Symposium on Applications of Ad hoc and Sensor Networks (AAS-
NET’14), Vol. 37 of Procedia Computer Science, Elsevier, 2014, pp. 370–
375. doi:10.1016/j.procs.2014.08.055.

[40] B. Pooja, M. Manohara Pai, M. Radhika, A Dual Cloud Based Secure En-
vironmental Parameter Monitoring System: A WSN Approach, in: 4th In-
ternational Conference on Cloud Computing (CloudComp 2013), Springer,
2014, pp. 189–198. doi:10.1007/978-3-319-05506-0_18.

[41] A. D. Molina, M. Salajegheh, K. Fu, HICCUPS: Health Information Col-
laborative Collection Using Privacy and Security, in: ACM workshop on
Security and privacy in medical and home-care systems (SPIMACS), ACM,
2009, pp. 21–30. doi:10.1145/1655084.1655089.

[42] J.-J. Yang, J.-Q. Li, Y. Niu, A hybrid solution for privacy preserving med-
ical data sharing in the cloud environment, Future Generation Computer
Systems 43-44 (2015) 74–86. doi:10.1016/j.future.2014.06.004.

[43] A. Jacobsson, M. Boldt, B. Carlsson, On the Risk Exposure of Smart Home
Automation Systems, in: 2014 International Conference on Future Internet
of Things and Cloud, IEEE, 2014, pp. 183–190. doi:10.1109/FiCloud.

2014.37.

[44] T. Kirkham, D. Armstrong, K. Djemame, M. Jiang, Risk driven Smart
Home resource management using cloud services, Future Generation Com-
puter Systems 38 (2014) 13–22. doi:10.1016/j.future.2013.08.006.

36

http://dx.doi.org/10.1109/ISEC.2002.1166906
http://dx.doi.org/10.1109/ISEC.2002.1166906
http://dx.doi.org/10.1109/ICCCN.2012.6289252
http://dx.doi.org/10.1016/j.future.2013.09.011
http://dx.doi.org/10.1016/j.future.2013.09.011
http://dx.doi.org/10.1109/TPDS.2012.97
http://dx.doi.org/10.1016/j.procs.2014.08.055
http://dx.doi.org/10.1007/978-3-319-05506-0_18
http://dx.doi.org/10.1145/1655084.1655089
http://dx.doi.org/10.1016/j.future.2014.06.004
http://dx.doi.org/10.1109/FiCloud.2014.37
http://dx.doi.org/10.1109/FiCloud.2014.37
http://dx.doi.org/10.1016/j.future.2013.08.006

[45] T.-M. Pasquier, J. Powles, Expressing and Enforcing Location Require-
ments in the Cloud Using Information Flow Control, in: 2015 IEEE Inter-
national Conference on Cloud Engineering (IC2E), IEEE, 2015, pp. 410–
415. doi:10.1109/IC2E.2015.71.

[46] W. Itani, A. Kayssi, A. Chehab, Privacy as a Service: Privacy-Aware Data
Storage and Processing in Cloud Computing Architectures, in: Eighth
IEEE International Conference on Dependable, Autonomic and Secure
Computing (DASC), IEEE, 2009, pp. 711–716. doi:10.1109/DASC.2009.
139.

[47] G. Karjoth, M. Schunter, A Privacy Policy Model for Enterprises, in: 15th
IEEE Computer Security Foundations Workshop (CSFW), IEEE, 2002, pp.
271–281. doi:10.1109/CSFW.2002.1021821.

[48] Q. He, Privacy Enforcement with an Extended Role-Based Access Control
Model, Tech. Rep. TR-2003-09, Department of Computer Science, North
Carolina State University (2003).

[49] Q. Ni, E. Bertino, J. Lobo, C. Brodie, C.-M. Karat, J. Karat, A. Trombeta,
Privacy-Aware Role-Based Access Control, ACM Transactions on Informa-
tion and System Security 13 (3) (2010) 24:1–24:31. doi:10.1145/1805974.
1805980.

[50] J. Spillner, A. Schill, Flexible Data Distribution Policy Language and Gate-
way Architecture, in: 2012 IEEE Latin America Conference on Cloud
Computing and Communications (LATINCLOUD), IEEE, 2012, pp. 1–6.
doi:10.1109/LatinCloud.2012.6508149.

[51] C. Brodie, C.-M. Karat, J. Karat, J. Feng, Usable Security and Privacy:
A Case Study of Developing Privacy Management Tools, in: Proceedings
of the 2005 Symposium on Usable Privacy and Security, ACM, 2005, pp.
35–43. doi:10.1145/1073001.1073005.

[52] eXtensible Access Control Markup Language (XACML) Version 3.0, OASIS
Standard (2013).

[53] C. A. Brodie, C.-M. Karat, J. Karat, An Empirical Study of Natural Lan-
guage Parsing of Privacy Policy Rules Using the SPARCLE Policy Work-
bench, in: Proceedings of the Second Symposium on Usable Privacy and
Security, ACM, 2006, pp. 8–19. doi:10.1145/1143120.1143123.

[54] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, S. Völkel,
Design Guidelines for Domain Specific Languages, in: Proceedings of the
9th OOPSLA Workshop on Domain-Specific Modeling, 2009, pp. 7–13.

[55] S. Trabelsi, J. Sendor, S. Reinicke, PPL: PrimeLife Privacy Policy Engine,
in: 2011 IEEE International Symposium on Policies for Distributed Sys-
tems and Networks (POLICY), IEEE, 2011, pp. 184–185. doi:10.1109/

POLICY.2011.24.

37

http://dx.doi.org/10.1109/IC2E.2015.71
http://dx.doi.org/10.1109/DASC.2009.139
http://dx.doi.org/10.1109/DASC.2009.139
http://dx.doi.org/10.1109/CSFW.2002.1021821
http://dx.doi.org/10.1145/1805974.1805980
http://dx.doi.org/10.1145/1805974.1805980
http://dx.doi.org/10.1109/LatinCloud.2012.6508149
http://dx.doi.org/10.1145/1073001.1073005
http://dx.doi.org/10.1145/1143120.1143123
http://dx.doi.org/10.1109/POLICY.2011.24
http://dx.doi.org/10.1109/POLICY.2011.24

[56] P. Colombo, E. Ferrari, Towards a Modeling and Analysis Framework
for Privacy-Aware Systems, in: 2012 International Conference on Pri-
vacy, Security, Risk and Trust (PASSAT) and 2012 International Con-
fernece on Social Computing (SocialCom), IEEE, 2012, pp. 81–90. doi:

10.1109/SocialCom-PASSAT.2012.12.

[57] D. Jutla, P. Bodorik, S. Ali, Engineering Privacy for Big Data Apps with
the Unified Modeling Language, in: 2013 IEEE International Congress
on Big Data (BigData Congress), IEEE, 2013, pp. 38–45. doi:10.1109/

BigData.Congress.2013.15.

[58] C. Atkinson, T. Kuhne, Model-Driven Development: A Metamodeling
Foundation, IEEE Software 20 (5) (2003) 36–41. doi:10.1109/MS.2003.

1231149.

[59] B. Rumpe, Agile modeling with the UML, in: Radical Innovations of Soft-
ware and Systems Engineering in the Future, Springer, 2004, pp. 297–309.
doi:10.1007/978-3-540-24626-8_21.

[60] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language
Reference Manual, Addison-Wesley, 1999.

[61] B. Rumpe, Agile Modellierung mit UML: Codegenerierung,
Testfälle, Refactoring, 2nd Edition, Springer, 2012. doi:10.1007/

978-3-642-22430-0.

[62] B. Rumpe, Modellierung mit UML, 2nd Edition, Springer, 2011. doi:

10.1007/978-3-642-22413-3.

[63] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, S. Völkel, MontiCore
1.0 – Ein Framework zur Erstellung und Verarbeitung domänenspezifischer
Sprachen, Tech. Rep. 2006-04, Institute for Software Systems Engineering,
Braunschweig University of Technology (2006).

[64] M. Eysholdt, H. Behrens, Xtext: Implement Your Language Faster Than
the Quick and Dirty Way, in: Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems Lan-
guages and Applications Companion (OOPSLA), ACM, 2010, pp. 307–309.
doi:10.1145/1869542.1869625.

[65] M. Schindler, Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der
UML/P, Ph.D. thesis, RWTH Aachen University (2012).

[66] A. van Deursen, P. Klint, J. Visser, Domain-specific Languages: An
Annotated Bibliography, ACM SIGPLAN Notices 35 (6) (2000) 26–36.
doi:10.1145/352029.352035.

[67] J. Jensen, M. G. Jaatun, Security in Model Driven Development: A Survey,
in: 2011 Sixth International Conference on Availability, Reliability and
Security (ARES), IEEE, 2011, pp. 704–709. doi:10.1109/ARES.2011.110.

38

http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.12
http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.12
http://dx.doi.org/10.1109/BigData.Congress.2013.15
http://dx.doi.org/10.1109/BigData.Congress.2013.15
http://dx.doi.org/10.1109/MS.2003.1231149
http://dx.doi.org/10.1109/MS.2003.1231149
http://dx.doi.org/10.1007/978-3-540-24626-8_21
http://dx.doi.org/10.1007/978-3-642-22430-0
http://dx.doi.org/10.1007/978-3-642-22430-0
http://dx.doi.org/10.1007/978-3-642-22413-3
http://dx.doi.org/10.1007/978-3-642-22413-3
http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1145/352029.352035
http://dx.doi.org/10.1109/ARES.2011.110

[68] T. Lodderstedt, D. Basin, J. Doser, SecureUML: A UML-Based Modeling
Language for Model-Driven Security, in: UML 2002 – The Unified Modeling
Language, Springer, 2002, pp. 426–441. doi:10.1007/3-540-45800-X_33.

[69] D. Basin, M. Clavel, M. Egea, A Decade of Model-Driven Security, in:
Proceedings of the 16th ACM Symposium on Access Control Models and
Technologies (SACMAT), ACM, 2011, pp. 1–10. doi:10.1145/1998441.

1998443.

[70] D. Ma, G. Tsudik, A New Approach to Secure Logging, ACM Transactions
on Storage 5 (1) (2009) 2:1–2:21. doi:10.1145/1502777.1502779.

[71] Freemarker project, Freemarker (2015).
URL http://freemarker.org/

[72] P. Dourish, K. Anderson, Collective Information Practice: Emploring Pri-
vacy and Security as Social and Cultural Phenomena, Human-Computer
Interaction 21 (3) (2006) 319–342. doi:10.1207/s15327051hci2103_2.

[73] H. Nissenbaum, A Contextual Approach to Privacy Online, Daedalus
140 (4) (2011) 32–48. doi:10.1162/DAED_a_00113.

[74] G. T. Marx, G. W. Muschert, Personal Information, Borders, and the New
Surveillance Studies, Annual Review of Law and Social Science 3 (2007)
375–395. doi:10.1146/annurev.lawsocsci.3.081806.112824.

[75] M. Henze, M. Großfengels, M. Koprowski, K. Wehrle, Towards Data Han-
dling Requirements-aware Cloud Computing, in: 2013 IEEE 5th Interna-
tional Conference on Cloud Computing Technology and Science (Cloud-
Com), IEEE, 2013, pp. 266–269. doi:10.1109/CloudCom.2013.145.

[76] R. M. Needham, Denial of Service, in: Proceedings of the 1st ACM Confer-
ence on Computer and Communications Security (CCS), ACM, 1993, pp.
151–153. doi:10.1145/168588.168607.

[77] D. Dean, A. Stubblefield, Using Client Puzzles to Protect TLS, in: Pro-
ceedings of the 10th USENIX Security Symposium, USENIX, 2001, pp.
1–8.

[78] J. Mirkovic, P. Reiher, A Taxonomy of DDoS Attack and DDoS Defense
Mechanisms, SIGCOMM Comput. Commun. Rev. 34 (2) (2004) 39–53.
doi:10.1145/997150.997156.

39

http://dx.doi.org/10.1007/3-540-45800-X_33
http://dx.doi.org/10.1145/1998441.1998443
http://dx.doi.org/10.1145/1998441.1998443
http://dx.doi.org/10.1145/1502777.1502779
http://freemarker.org/
http://freemarker.org/
http://dx.doi.org/10.1207/s15327051hci2103_2
http://dx.doi.org/10.1162/DAED_a_00113
http://dx.doi.org/10.1146/annurev.lawsocsci.3.081806.112824
http://dx.doi.org/10.1109/CloudCom.2013.145
http://dx.doi.org/10.1145/168588.168607
http://dx.doi.org/10.1145/997150.997156

	Introduction
	Scenario
	Application Areas
	Network Scenario

	Privacy Concerns and Considerations
	Privacy Concerns of End-users
	Privacy Considerations of Service Providers

	Related Work
	Securely Outsourcing Data to the Cloud
	Preserving Privacy in the IoT and Cloud Computing
	Privacy Policy Languages
	Model-driven Development

	Problem Statement
	User-driven Privacy Enforcement for Cloud-based Services in the IoT
	Model-driven Privacy
	Privacy Policy
	Monitoring Data Usage and Auditing Data Processing
	Generating Executable Code from PDL Models

	Interaction with the User
	Configurable Privacy Policies for Privacy Experts
	Default Privacy Settings for Privacy Novices
	Social Context of User Interaction

	Privacy Enforcement Points
	Data Protection and Access Control
	Flexible Access Control
	Enforcement of Data Handling Requirements

	Discussion
	Data Security
	Transparency by Design
	Efficient Privacy-aware Development
	User-controlled Data Usage and Handling
	Adaptable User-control
	Evaluating User Acceptance

	Conclusion

